Ultrafast Dynamics of Highly Excited Molecules in the Condensed Phase

凝聚相中高激发分子的超快动力学

基本信息

项目摘要

This project, funded by the Chemical Structure, Dynamics, and Mechanisms (CSDM-A) program in the Division of Chemistry, supports Professor Christopher Elles and a group of graduate and undergraduate research students at the University of Kansas in their quest to better understand, and even control, the behavior of molecules excited by light. The research uses sophisticated laser techniques to energize molecules twice in rapid succession in order to cause new reactions that would not otherwise occur. These experiments reveal new information about the way in which molecules react in any type of light-activated reaction. Learning how to control chemical reactions with a sequence of laser pulses may also enable the development of new materials and technologies that take advantage of the motions of individual molecules, including color-changing molecules that can be used as molecular switches or motors. The project provides advanced technical training for graduate and undergraduate research students, as well as curriculum development opportunities for aspiring high school science teachers.The project examines the dynamics of molecules excited above the first electronically excited state. Molecules in these higher-lying states typically have very short lifetimes that are difficult to probe experimentally, and challenging to calculate using theory. However, accessing the higher-lying states through sequential excitation opens new reaction pathways that are not possible via direct excitation from the equilibrium ground-state geometry. In other words, allowing a molecule to evolve on one potential energy surface before re-exciting to a higher state provides an opportunity to selectively control the reaction path of the molecule. The experimental approach uses a combination of ultrafast spectroscopy techniques, including three-pulse transient absorption (pump-repump-probe, PReP) measurements and excited-state resonance Raman scattering (or femtosecond stimulated Raman scattering, FSRS). The PReP measurements monitor the evolution of highly excited molecules directly, whereas the FSRS measurements probe the topology of higher-lying potential energy surfaces based on mode-specific resonance enhancements of the Raman scattering signal. These measurements provide important benchmarks for theory, while simultaneously pushing the limits of experimental ultrafast spectroscopy. The broader impacts of the work include a deeper understanding of fundamental reaction dynamics, development of ultrafast spectroscopy methods for probing chemical reactions, and an educational outreach program that exposes aspiring science teachers to cutting-edge research topics that they will use to develop classroom activities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目由化学系化学结构、动力学和机制(CSDM-A)项目资助,支持堪萨斯大学克里斯托弗·埃莱斯教授和一群研究生和本科生的研究,以更好地理解甚至控制受光激发的分子的行为。这项研究使用复杂的激光技术,连续两次快速激活分子,以引起原本不会发生的新反应。这些实验揭示了分子在任何类型的光激活反应中的反应方式的新信息。学习如何用一系列激光脉冲来控制化学反应,也可能有助于开发利用单个分子运动的新材料和新技术,包括可以用作分子开关或马达的变色分子。该项目为研究生和本科生提供先进的技术培训,并为有抱负的高中科学教师提供课程发展机会。该项目研究了在第一电子激发态以上被激发的分子动力学。处于这些较高状态的分子通常寿命很短,很难用实验来探测,也很难用理论来计算。然而,通过顺序激发进入更高的状态开辟了新的反应途径,这是不可能通过平衡基态几何的直接激发来实现的。换句话说,允许一个分子在一个势能表面上进化,然后再激发到更高的状态,这为有选择地控制分子的反应路径提供了机会。实验方法结合了超快光谱技术,包括三脉冲瞬态吸收(泵浦-再泵-探针,PReP)测量和激发态共振拉曼散射(或飞秒受激拉曼散射,FSRS)。PReP测量直接监测高激发分子的演化,而FSRS测量基于拉曼散射信号的特定模式共振增强来探测更高势能表面的拓扑结构。这些测量为理论提供了重要的基准,同时也推动了实验超快光谱学的极限。这项工作的广泛影响包括对基本反应动力学的更深入的理解,用于探测化学反应的超快光谱方法的发展,以及一个教育推广计划,使有抱负的科学教师接触到他们将用于课堂活动的前沿研究课题。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Photochemical Decarbonylation of Oxetanone and Azetidinone: Spectroscopy, Computational Models, and Synthetic Applications**
氧杂环丁酮和氮杂环丁酮的光化学脱羰:光谱学、计算模型和合成应用**
  • DOI:
    10.1002/anie.202215856
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Singh, Manvendra;Dhote, Pawan;Johnson, Daniel R.;Figueroa‐Lazú, Samuel;Elles, Christopher G.;Boskovic, Zarko
  • 通讯作者:
    Boskovic, Zarko
Excited-state resonance Raman spectroscopy probes the sequential two-photon excitation mechanism of a photochromic molecular switch
激发态共振拉曼光谱探测光致变色分子开关的连续双光子激发机制
  • DOI:
    10.1063/5.0126974
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Burns, Kristen H.;Quincy, Timothy J.;Elles, Christopher G.
  • 通讯作者:
    Elles, Christopher G.
Ultrafast Dynamics of a Molecular Switch from Resonance Raman Spectroscopy: Comparing Visible and UV Excitation
共振拉曼光谱的分子开关超快动力学:比较可见光和紫外激发
  • DOI:
    10.1021/acs.jpca.2c05435
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Burns, Kristen H.;Elles, Christopher G.
  • 通讯作者:
    Elles, Christopher G.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Elles其他文献

Christopher Elles的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher Elles', 18)}}的其他基金

Broadband Two-Photon Absorption Spectroscopy for High-Repetition-Rate Lasers
高重复率激光器的宽带双光子吸收光谱
  • 批准号:
    1905334
  • 财政年份:
    2019
  • 资助金额:
    $ 48.53万
  • 项目类别:
    Standard Grant
CAREER: Controlling non-adiabatic reaction dynamics in solution: A window on the fundamental details of photochemical reactions
职业:控制溶液中的非绝热反应动力学:了解光化学反应基本细节的窗口
  • 批准号:
    1151555
  • 财政年份:
    2012
  • 资助金额:
    $ 48.53万
  • 项目类别:
    Continuing Grant

相似国自然基金

β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
  • 批准号:
    n/a
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Understanding microscopic dynamics in sheared highly polydisperse soft materials
了解剪切高度多分散软材料的微观动力学
  • 批准号:
    2306371
  • 财政年份:
    2023
  • 资助金额:
    $ 48.53万
  • 项目类别:
    Standard Grant
Making sense of highly-disturbed blood flow dynamics
理解高度扰动的血流动力学
  • 批准号:
    RGPIN-2018-04649
  • 财政年份:
    2022
  • 资助金额:
    $ 48.53万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Highly Underactuated Lower-Body Exoskeletons and the Dynamics of Walking
职业:高度欠驱动的下半身外骨骼和行走动力学
  • 批准号:
    2145085
  • 财政年份:
    2022
  • 资助金额:
    $ 48.53万
  • 项目类别:
    Standard Grant
Development of a Practical Highly Sensitive Diagnostic Method for African Swine Disease in Vietnam and Elucidation of Its Environmental Dynamics
越南开发一种实用的非洲猪病高灵敏诊断方法并阐明其环境动态
  • 批准号:
    22KK0097
  • 财政年份:
    2022
  • 资助金额:
    $ 48.53万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
New frontiers in forest carbon processes: novel methane dynamics, pyrogenic carbon, and restoration of highly impacted sites
森林碳过程的新领域:新型甲烷动力学、热解碳和受严重影响的地点的恢复
  • 批准号:
    RGPIN-2022-04627
  • 财政年份:
    2022
  • 资助金额:
    $ 48.53万
  • 项目类别:
    Discovery Grants Program - Individual
Development of a highly sensitive simple detection method for SARS-CoV-2 to achieve highly accurate diagnosis and elucidation of environmental dynamics
开发针对 SARS-CoV-2 的高灵敏度简单检测方法,以实现环境动态的高精度诊断和阐明
  • 批准号:
    21H03180
  • 财政年份:
    2021
  • 资助金额:
    $ 48.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Investigation of quantum dynamics of vortices and quantum critical phenomena in highly crystalline 2D superconductors
高结晶二维超导体中涡旋量子动力学和量子临界现象的研究
  • 批准号:
    21H01792
  • 财政年份:
    2021
  • 资助金额:
    $ 48.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of Phototherapeutic Drugs and Elucidation of Single Molecule Dynamics Using Highly Bright Stable Quantum Dots and Innovative 3D cell system
使用高亮稳定量子点和创新的 3D 细胞系统开发光治疗药物并阐明单分子动力学
  • 批准号:
    21H01753
  • 财政年份:
    2021
  • 资助金额:
    $ 48.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Making sense of highly-disturbed blood flow dynamics
理解高度扰动的血流动力学
  • 批准号:
    RGPIN-2018-04649
  • 财政年份:
    2021
  • 资助金额:
    $ 48.53万
  • 项目类别:
    Discovery Grants Program - Individual
Effects of three-dimensional tower motions on the highly flexible wind turbine blade dynamics
三维塔架运动对高柔性风力涡轮机叶片动力学的影响
  • 批准号:
    564177-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 48.53万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了