Excellence in Research: Direct synthesis of water soluble iron oxide nanoparticles with high relaxivity and interaction with small molecules
卓越的研究:直接合成具有高弛豫率和与小分子相互作用的水溶性氧化铁纳米颗粒
基本信息
- 批准号:2000135
- 负责人:
- 金额:$ 47.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-15 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Nontechnical Summary:This project investigates how magnetic resonance image (MRI) signals change as iron oxide nanoparticles interact with bioactive molecules. The understanding of such signal changes provides a scientific foundation to monitor drug delivery and release using MRI, which will significantly improve the treatment of diseases such as cancer as the dosage and frequency of drugs can be adjusted based on real-time drug uptake information. The major challenges of current approaches for monitoring drug delivery include lack of high sensitivity and limited tissue volume to be imaged. We overcome these challenges by synthesizing high water-soluble iron oxide nanoparticles and using them as MRI agents. MRI is a powerful imaging technique in clinical practice because it provides images with excellent details in a non-invasive, whole-body, and real-time monitoring manner. The multifunctional properties of nanoparticles provide unique advantages for the precise delivery of therapeutic agents with the assistance of imaging. The broad impacts of the project will be achieved by: (1) disseminating the knowledge obtained from this research to the science community for monitoring drug delivery where a non-invasive monitor is extremely important; (2) providing cutting-edge research opportunities for undergraduate and graduate students, particularly those from underrepresented students at Jackson State University (JSU); (3) promoting STEM education via exhibitions during the Mississippi Science Maker at Mississippi Museum of Nature and Science.Technical summary:Nanoparticles can improve drug efficacy and reduce toxicity by altering pharmacokinetics. To track the delivery behavior of drugs, fluorescent tags or radiotracers are usually attached. However, the intrinsic drawback of fluorescent tags lies in the limitation of tissue penetration of light. Availability is a significant challenge for radiotracer approaches. In comparison, iron oxide nanoparticles (IONPs) could be used as a self-reported drug delivery system because of their capability to change water relaxivity in tissue and their excellent biocompatibility. Despite intensive interests, the effect of bioactive molecules on the T1-weighted magnetic property of extrasmall iron oxide nanoparticles (ESIONPs) has not been studied. In addition, the T1 relaxation performance of IONPs is relatively low. The partial reason is that the monodispersal IONPs synthesized by current methods can only be dissolved in an organic solvent. A sophisticated surface modification is required to make them water soluble. In this project, a stepwise growth method will be explored to directly synthesize water soluble ESIONPs with a high T1 relaxation performance. The interaction of ESIONPs with bioactive molecules will be investigated as self-reported nano platform for drug delivery. The project will gain a fundamental understanding of T1 relaxivity of ESIONPs interacting with bioactive molecules.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:该项目研究氧化铁纳米颗粒与生物活性分子相互作用时磁共振图像 (MRI) 信号如何变化。对这种信号变化的理解为利用MRI监测药物递送和释放提供了科学基础,这将显着改善癌症等疾病的治疗,因为药物的剂量和频率可以根据实时药物摄取信息进行调整。当前监测药物输送方法的主要挑战包括缺乏高灵敏度和要成像的组织体积有限。我们通过合成高水溶性氧化铁纳米颗粒并将其用作 MRI 试剂来克服这些挑战。 MRI 是临床实践中一种强大的成像技术,因为它以非侵入性、全身、实时监测的方式提供细节丰富的图像。纳米颗粒的多功能特性为借助成像技术精确递送治疗剂提供了独特的优势。该项目的广泛影响将通过以下方式实现:(1)向科学界传播从这项研究中获得的知识,以监测药物输送,其中非侵入性监测器极其重要; (2) 为本科生和研究生,特别是杰克逊州立大学(JSU)代表性不足的学生提供前沿研究机会; (3)通过在密西西比州自然科学博物馆举办的Mississippi Science Maker期间的展览来促进STEM教育。技术摘要:纳米颗粒可以通过改变药代动力学来提高药效并降低毒性。为了跟踪药物的输送行为,通常会附加荧光标签或放射性示踪剂。然而,荧光标签的固有缺点在于光对组织穿透的限制。可用性是放射性示踪剂方法面临的重大挑战。相比之下,氧化铁纳米粒子(IONP)可以用作自我报告的药物递送系统,因为它们能够改变组织中的水弛豫率并且具有优异的生物相容性。尽管人们对此很感兴趣,但生物活性分子对超小氧化铁纳米粒子 (ESIONP) 的 T1 加权磁性能的影响尚未得到研究。此外,IONPs的T1弛豫性能相对较低。部分原因是现有方法合成的单分散IONP只能溶解在有机溶剂中。需要进行复杂的表面改性才能使其水溶性。本项目将探索逐步生长方法直接合成具有高T1弛豫性能的水溶性ESIONP。 ESIONP 与生物活性分子的相互作用将作为自我报告的药物输送纳米平台进行研究。该项目将对 ESIONP 与生物活性分子相互作用的 T1 弛豫性有基本的了解。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Size-Dependent Activity of Iron Nanoparticles in Both Thermal and Plasma Driven Catalytic Ammonia Decomposition
- DOI:10.1021/acs.iecr.2c02092
- 发表时间:2022-08-10
- 期刊:
- 影响因子:4.2
- 作者:Chen, Genwei;Qu, Jing;Xiang, Yizhi
- 通讯作者:Xiang, Yizhi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yongfeng Zhao其他文献
Mechanical properties of Al3BC by nanoindentation and micropillar compression
通过纳米压痕和微柱压缩测定 Al3BC 的机械性能
- DOI:
10.1016/j.matlet.2020.127361 - 发表时间:
2020-04 - 期刊:
- 影响因子:3
- 作者:
Yongfeng Zhao;Arun Sundar S.Singaravelu;Xia Ma;Xiangfa Liu;Nikhilesh Chawla - 通讯作者:
Nikhilesh Chawla
Diversity, Structure, and Marker-Trait Association Analysis of the Maize Recombinant Inbred Line Population
玉米重组自交系群体的多样性、结构和标记性状关联分析
- DOI:
10.1016/s1671-2927(11)60084-9 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Jingtang Chen;Li;Liying Zhu;Jinjie Guo;Yongfeng Zhao;Yaqun Huang - 通讯作者:
Yaqun Huang
Microstructure evolution and mechanical properties of high fraction Alsub3/subBC/Al composites fabricated by a reactive hot pressing sintering process
通过反应热压烧结工艺制备的高分数 Al₃BC/Al 复合材料的微观结构演变和力学性能
- DOI:
10.1016/j.jallcom.2024.175573 - 发表时间:
2024-10-25 - 期刊:
- 影响因子:6.300
- 作者:
Xia Ma;Baoqi cheng;Kai Zhao;Fengshi Yin;Xiangfa Liu;Nikhilesh Chawla;Yongfeng Zhao - 通讯作者:
Yongfeng Zhao
Prediction and application of the formation process of annular flow for uniform distribution in multi-stream vertical headers
多股流垂直集管中均匀分布的环状流形成过程的预测及应用
- DOI:
10.1016/j.applthermaleng.2025.125812 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:6.900
- 作者:
Han Wang;Yu Sun;Wenhua Guo;Dong Huang;Rijing Zhao;Yongfeng Zhao - 通讯作者:
Yongfeng Zhao
Enhancing the tribological properties of cemented carbide drills for printed circuit boards through surface micro-structures
- DOI:
10.1016/j.wear.2024.205667 - 发表时间:
2025-03-15 - 期刊:
- 影响因子:
- 作者:
Lijuan Zheng;Yong Sun;Caijun Luo;Yongfeng Zhao;Xiangqian Xu;Xin Wei;Jun Wang;Chengyong Wang - 通讯作者:
Chengyong Wang
Yongfeng Zhao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yongfeng Zhao', 18)}}的其他基金
CAREER: Harnessing continuous growth mechanism to synthesize water-soluble magnetic nanoparticles for magnetic particle imaging
职业:利用连续生长机制合成用于磁性粒子成像的水溶性磁性纳米粒子
- 批准号:
2144790 - 财政年份:2022
- 资助金额:
$ 47.5万 - 项目类别:
Continuing Grant
Research Initiation Awards: Synthesis of biomimetic melanin-like multifunctional nanoparticles for pH sensitive magnetic resonance imaging and photothermal therapy
研究启动奖:用于pH敏感磁共振成像和光热治疗的仿生黑色素类多功能纳米粒子的合成
- 批准号:
1700390 - 财政年份:2017
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Understanding the Role of Surface Bound Ligands on Metals in H2O2 Direct Synthesis
合作研究:了解金属表面结合配体在 H2O2 直接合成中的作用
- 批准号:
2349884 - 财政年份:2024
- 资助金额:
$ 47.5万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding the Role of Surface Bound Ligands on Metals in H2O2 Direct Synthesis
合作研究:了解金属表面结合配体在 H2O2 直接合成中的作用
- 批准号:
2349883 - 财政年份:2024
- 资助金额:
$ 47.5万 - 项目类别:
Continuing Grant
Collaborative Research: Investigation of Mass and Energy Transfer Mechanisms in Stimuli-Responsive Smart Sorbents for Direct Air Capture
合作研究:用于直接空气捕获的刺激响应智能吸附剂的质量和能量传递机制的研究
- 批准号:
2232875 - 财政年份:2023
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant
Collaborative Research: Investigation of Mass and Energy Transfer Mechanisms in Stimuli-Responsive Smart Sorbents for Direct Air Capture
合作研究:用于直接空气捕获的刺激响应智能吸附剂的质量和能量传递机制的研究
- 批准号:
2230593 - 财政年份:2023
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant
Doctoral Dissertation Research: On the ground and from above: A multi-factor analysis of the direct and indirect drivers of tallgrass prairie small mammal communities
博士论文研究:地面和空中:高草草原小型哺乳动物群落直接和间接驱动因素的多因素分析
- 批准号:
2322603 - 财政年份:2023
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant
Direct drill for pre-breeding: Delivering research field trial capabilities for net-zero crop production in the UK
预育种直接钻探:为英国净零作物生产提供研究田间试验能力
- 批准号:
BB/X019896/1 - 财政年份:2023
- 资助金额:
$ 47.5万 - 项目类别:
Research Grant
Doctoral Dissertation Research: The acquisition of anaphoric direct objects in a third language: A variationist perspective
博士论文研究:第三语言中照应直接宾语的习得:变体观点
- 批准号:
2235101 - 财政年份:2023
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant
Collaborative Research: SUSCHEM: Engineering Polymer-Nanocatalyst Membranes for Direct Capture of CO2 and Electrochemical Conversion to C2+ Liquid Fuel
合作研究:SUSCHEM:用于直接捕获 CO2 和电化学转化为 C2 液体燃料的工程聚合物纳米催化剂膜
- 批准号:
2324346 - 财政年份:2023
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant
Project TENET: Research on an innovative direct air capture technology that delivers a cheaper and more energy-efficient approach to removing and storing CO2.
项目宗旨:研究创新的直接空气捕获技术,提供一种更便宜、更节能的方法来去除和储存二氧化碳。
- 批准号:
10071228 - 财政年份:2023
- 资助金额:
$ 47.5万 - 项目类别:
Launchpad
Collaborative Research: SUSCHEM: Engineering Polymer-Nanocatalyst Membranes for Direct Capture of CO2 and Electrochemical Conversion to C2+ Liquid Fuel
合作研究:SUSCHEM:用于直接捕获 CO2 和电化学转化为 C2 液体燃料的工程聚合物纳米催化剂膜
- 批准号:
2324345 - 财政年份:2023
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant