Number theory for representations of algebraic groups and associated zeta functions

代数群和相关 zeta 函数表示的数论

基本信息

  • 批准号:
    25707002
  • 负责人:
  • 金额:
    $ 5.99万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
  • 财政年份:
    2013
  • 资助国家:
    日本
  • 起止时间:
    2013-04-01 至 2018-03-31
  • 项目状态:
    已结题

项目摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Orbital L-functions for the space of binary cubic forms and their applicationas
二元三次形式空间的轨道L函数及其应用
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Taniguchi;F. Thorne;Takashi Taniguchi;Takashi Taniguchi;Takashi Taniguchi;Takashi Taniguchi;Takashi Taniguchi
  • 通讯作者:
    Takashi Taniguchi
Variants of Ohno-Nakagawa's dual identity
大野中川双重身份的变体
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Taniguchi Takashi;Thorne Frank;M. Bhargava; A. Shankar; T. Taniguchi; F. Thorne; J. Tsimerman; Y. Zhao;Takashi Taniguchi and Frank Thorne;Takashi Taniguchi;Takashi Taniguchi;谷口隆;谷口隆
  • 通讯作者:
    谷口隆
Exponential sums associated to prehomogeneous vector spaces
与预齐次向量空间相关的指数和
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Taniguchi Takashi;Thorne Frank;M. Bhargava; A. Shankar; T. Taniguchi; F. Thorne; J. Tsimerman; Y. Zhao;Takashi Taniguchi and Frank Thorne;Takashi Taniguchi;Takashi Taniguchi;谷口隆;谷口隆;谷口隆;谷口隆;谷口隆;Takashi Taniguchi;Takashi Taniguchi
  • 通讯作者:
    Takashi Taniguchi
3次体の数え上げ
计算立方体
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yasuo Ohni;Takashi Taniguchi;谷口隆
  • 通讯作者:
    谷口隆
Orbital exponential sums for prehomogeneous vector spaces
预齐次向量空间的轨道指数和
  • DOI:
    10.1353/ajm.2020.0004
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Taniguchi Takashi;Thorne Frank
  • 通讯作者:
    Thorne Frank
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Taniguchi Takashi其他文献

(Invited) Electrical Integrity and Anisotropy in Dielectric Breakdown of Layered h -BN Insulator
(特邀)层状h-BN绝缘体介电击穿的电完整性和各向异性
  • DOI:
    10.1149/07901.0091ecst
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nagashio Kosuke;Hattori Yoshiaki;Takahashi Nobuaki;Taniguchi Takashi;Watanabe Kenji;Bao Jianfeng;Norimatsu Wataru;Kusunoki Michiko
  • 通讯作者:
    Kusunoki Michiko
Nano/micro-scale phase change electronics using functional oxides/2D material heterostructures
使用功能氧化物/二维材料异质结构的纳米/微米级相变电子器件
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Genchi Shingo;Nakaharai Shu;Iwasaki Takuya;Watanabe Kenji;Taniguchi Takashi;Wakayama Yutaka;Hattori Azusa N.;Tanaka Hidekazu;Hidekazu Tanaka
  • 通讯作者:
    Hidekazu Tanaka
Atomic Structure of Twisted a Few Layer Graphene
扭曲多层石墨烯的原子结构
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ryo Ishikawa;Inoue Kazutoshi;Sawada Hidetaka;Taniguchi Takashi;Shibata Naoya;Yuichi Ikuhara
  • 通讯作者:
    Yuichi Ikuhara
Influence of an oblique magnetic field on planar flame front instability
倾斜磁场对平面火焰锋不稳定性的影响
  • DOI:
    10.1007/978-3-030-62497-2_26
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kuroda Takashi;Hoshi Yusuke;Masubuchi Satoru;Okada Mitsuhiro;Kitaura Ryo;Watanabe Kenji;Taniguchi Takashi;Machida Tomoki;Mako Sato and Yasuhide Fukumoto
  • 通讯作者:
    Mako Sato and Yasuhide Fukumoto
Mumford goodness of canonical L2-metrics on direct image sheaves over a curve
曲线上直接图像滑轮的规范 L2 度量的 Mumford 优点
  • DOI:
    10.1016/j.aim.2022.108485
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Onodera Momoko;Wakafuji Yusai;Hashimoto Taketo;Masubuchi Satoru;Moriya Rai;Zhang Yijin;Watanabe Kenji;Taniguchi Takashi;Machida Tomoki;Takayama Shigeharu
  • 通讯作者:
    Takayama Shigeharu

Taniguchi Takashi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Taniguchi Takashi', 18)}}的其他基金

Studies on hierarchical simulation methods using slow variables to predict the flows of soft matter
利用慢变量预测软物质流动的分层模拟方法研究
  • 批准号:
    19H01862
  • 财政年份:
    2019
  • 资助金额:
    $ 5.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
New developments in arithmetic invariant theory
算术不变理论的新进展
  • 批准号:
    17H02835
  • 财政年份:
    2017
  • 资助金额:
    $ 5.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of high temperature control technique using belt type high pressure apparatus and application for new materials synthesis
带式高压装置高温控制技术开发及其在新材料合成中的应用
  • 批准号:
    16K14395
  • 财政年份:
    2016
  • 资助金额:
    $ 5.99万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Study of exponential sums associated with prehomogeneous vector spaces
与预齐次向量空间相关的指数和的研究
  • 批准号:
    16K13747
  • 财政年份:
    2016
  • 资助金额:
    $ 5.99万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Research for synthesis of BCN crystals and their characterizations
BCN晶体的合成及其表征研究
  • 批准号:
    26248061
  • 财政年份:
    2014
  • 资助金额:
    $ 5.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Second main terms for density theorems in number theory
数论中密度定理的第二个主要术语
  • 批准号:
    24654005
  • 财政年份:
    2012
  • 资助金额:
    $ 5.99万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research

相似国自然基金

代数群的表示理论及其在Siegel模形式上的应用
  • 批准号:
    12301016
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
代数群无限维抽象表示中的若干问题
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
代数群作用下复射影簇的Lawson同调与morphic上同调
  • 批准号:
    12126309
  • 批准年份:
    2021
  • 资助金额:
    10.0 万元
  • 项目类别:
    数学天元基金项目
代数群作用下复射影簇的Lawson同调与morphic上同调
  • 批准号:
    12126354
  • 批准年份:
    2021
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
半单代数群超代数的范畴O及相关研究
  • 批准号:
    12171457
  • 批准年份:
    2021
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
关于代数群之覆盖群朗兰兹纲领中的若干问题
  • 批准号:
    12171422
  • 批准年份:
    2021
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
例外型与Cartan型单模李超代数群阶化的分类
  • 批准号:
    12001141
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
任意特征域简约李代数简约代数群及其广义结构与表示的研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
代数群与仿射Deligne-Lusztig簇
  • 批准号:
    11922119
  • 批准年份:
    2019
  • 资助金额:
    120 万元
  • 项目类别:
    优秀青年科学基金项目
非线性代数群作用的若干问题
  • 批准号:
    11701462
  • 批准年份:
    2017
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

簡約代数群の弱近似と志村多様体の数論幾何
Shimura流形的约简代数群和算术几何的弱近似
  • 批准号:
    24K16884
  • 财政年份:
    2024
  • 资助金额:
    $ 5.99万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
実簡約代数群の表現の絡作用素に対する幾何学的構成
实数约简代数群表示的缠绕算子的几何构造
  • 批准号:
    24K06734
  • 财政年份:
    2024
  • 资助金额:
    $ 5.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
志村多様体の数論幾何と簡約代数群の質量公式
Shimura流形的算术几何和约化代数群的质量公式
  • 批准号:
    23K19014
  • 财政年份:
    2023
  • 资助金额:
    $ 5.99万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
無限次元代数群とリー代数の構造および表現とその応用
无限维代数群和李代数的结构和表示及其应用
  • 批准号:
    21J10690
  • 财政年份:
    2021
  • 资助金额:
    $ 5.99万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
代数群作用を持つ代数多様体族の研究
具有代数群作用的代数簇族的研究
  • 批准号:
    21K03179
  • 财政年份:
    2021
  • 资助金额:
    $ 5.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Invariants for algebraic group actions
代数群作用的不变量
  • 批准号:
    2441842
  • 财政年份:
    2020
  • 资助金额:
    $ 5.99万
  • 项目类别:
    Studentship
簡約代数群とその被覆群のエンドスコピーの研究
约简代数群及其覆盖群的内窥镜研究
  • 批准号:
    20K03534
  • 财政年份:
    2020
  • 资助金额:
    $ 5.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Chow ring and cycle map of the classifying space of a linear algebraic group
线性代数群分类空间的 Chow 环和圈图
  • 批准号:
    17K05263
  • 财政年份:
    2017
  • 资助金额:
    $ 5.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Affine fibrations on algebraic varieties and algebraic group actions
代数簇上的仿射纤维和代数群作用
  • 批准号:
    15K04831
  • 财政年份:
    2015
  • 资助金额:
    $ 5.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
ホップ代数を用いたスーパー代数群の研究
用Hopf代数研究超代数群
  • 批准号:
    14J02022
  • 财政年份:
    2014
  • 资助金额:
    $ 5.99万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了