Harmonic Analysis in Convex Geometry
凸几何中的调和分析
基本信息
- 批准号:2000304
- 负责人:
- 金额:$ 29.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The problems addressed in this project concern the properties of shapes in an ambient space (like a human heart in the body) that can be inferred from the information about their shadows or slices (as in medical imaging). The beauty of the problems is that the formulations of many of them are "intuitively clear" not only to graduate students, but also to undergraduates, and in some cases, even to high-school pupils. On the other hand, the answers are very often counter-intuitive, requiring the use of the most advanced and sophisticated tools belonging to the different branches of modern mathematics. Many problems take their origin not in pure mathematics, but in medical imaging and tomography and the solutions might find very interesting biomedical applications. This project will contribute to US workforce development through the training of graduate students.The current project is a continuation of the long-time collaboration between the principal investigators. The PI and co-PI will continue to use and develop the methods of harmonic analysis to solve the problems arising in convex and discrete geometry. These problems include a new set of Bezout inequalities for mixed volumes, originating from classical Algebraic Geometry. The inequalities involve the size of projections of convex bodies and lead to very unexpected results in Information Theory and Probability. The principal investigators also plan to continue their work on the set of problems in Geometric Tomography proposed by Busemann and Petty in 1956. Only the first problem in the list has been solved so far. The PI and co-PI have made progress on a number of problems related to this list using the idea of the iteration of intersection and projection body operators. They will also continue to work on the questions related to the unique determination of convex bodies given the information on the size (or some other properties) of projections and sections.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目解决的问题涉及周围空间中形状的属性(如人体内的心脏),这些属性可以从有关其阴影或切片的信息(如医学成像中)推断出来。这些问题的美妙之处在于,其中许多问题的表述不仅对研究生,而且对本科生,甚至在某些情况下对高中生来说都是“直观清晰的”。另一方面,答案往往是反直觉的,需要使用属于现代数学不同分支的最先进和最复杂的工具。许多问题的根源不是纯数学,而是医学成像和断层扫描,其解决方案可能会发现非常有趣的生物医学应用。该项目将通过研究生培训为美国劳动力发展做出贡献。当前项目是主要研究人员之间长期合作的延续。 PI和co-PI将继续使用和发展调和分析方法来解决凸几何和离散几何中出现的问题。这些问题包括一组新的混合体积 Bezout 不等式,源自经典代数几何。这些不等式涉及凸体投影的大小,并导致信息论和概率中非常意外的结果。主要研究人员还计划继续研究 Busemann 和 Petty 于 1956 年提出的几何断层扫描问题集。到目前为止,仅解决了列表中的第一个问题。 PI 和 co-PI 使用交集和投影体算子迭代的思想在与此列表相关的许多问题上取得了进展。他们还将继续研究与凸体的独特确定相关的问题,考虑到投影和剖面的尺寸(或一些其他属性)的信息。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On an Equichordal Property of a Pair of Convex Bodies
关于一对凸体的等弦性质
- DOI:10.1007/s00454-022-00382-z
- 发表时间:2022
- 期刊:
- 影响因子:0.8
- 作者:Ryabogin, Dmitry
- 通讯作者:Ryabogin, Dmitry
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Artem Zvavitch其他文献
Polytopes of Maximal Volume Product
- DOI:
10.1007/s00454-019-00072-3 - 发表时间:
2019-03-18 - 期刊:
- 影响因子:0.600
- 作者:
Matthew Alexander;Matthieu Fradelizi;Artem Zvavitch - 通讯作者:
Artem Zvavitch
Isomorphic embedding of ℓ p n , 1<p<2, into ℓ 1 (1+ε)n
- DOI:
10.1007/bf02809909 - 发表时间:
2001-12-01 - 期刊:
- 影响因子:0.800
- 作者:
Assaf Naor;Artem Zvavitch - 通讯作者:
Artem Zvavitch
Projections of convex bodies and the fourier transform
- DOI:
10.1007/bf02787557 - 发表时间:
2004-12-01 - 期刊:
- 影响因子:0.800
- 作者:
Alexander Koldobsky;Dmitry Ryabogin;Artem Zvavitch - 通讯作者:
Artem Zvavitch
Artem Zvavitch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Artem Zvavitch', 18)}}的其他基金
Conference "Recent Advances in Functional Analysis"
会议“泛函分析的最新进展”
- 批准号:
1839058 - 财政年份:2018
- 资助金额:
$ 29.61万 - 项目类别:
Standard Grant
Conference on Infinite-Dimensional Analysis
无限维分析会议
- 批准号:
1644871 - 财政年份:2016
- 资助金额:
$ 29.61万 - 项目类别:
Standard Grant
Harmonic Analysis in Convex Geometry
凸几何中的调和分析
- 批准号:
1600753 - 财政年份:2016
- 资助金额:
$ 29.61万 - 项目类别:
Continuing Grant
Harmonic Analysis in Convex Geometry
凸几何中的调和分析
- 批准号:
1101636 - 财政年份:2011
- 资助金额:
$ 29.61万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Fourier analytic and probabilistic methods in geometric functional analysis and convexity
FRG:协作研究:几何泛函分析和凸性中的傅里叶分析和概率方法
- 批准号:
0652684 - 财政年份:2007
- 资助金额:
$ 29.61万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences-"Probabilistic and Combinatorial Approach in Analysis"
NSF/CBMS 数学科学区域会议 - “分析中的概率和组合方法”
- 批准号:
0532494 - 财政年份:2006
- 资助金额:
$ 29.61万 - 项目类别:
Standard Grant
Fourier Analytic Approach to the Geometric Tomography
几何断层扫描的傅立叶分析方法
- 批准号:
0504049 - 财政年份:2005
- 资助金额:
$ 29.61万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Harmonic Analysis, Ergodic Theory and Convex Geometry
职业:调和分析、遍历理论和凸几何
- 批准号:
2236493 - 财政年份:2023
- 资助金额:
$ 29.61万 - 项目类别:
Continuing Grant
Conference: Recent advances in applications of harmonic analysis to convex geometry
会议:调和分析在凸几何中的应用的最新进展
- 批准号:
2246779 - 财政年份:2023
- 资助金额:
$ 29.61万 - 项目类别:
Standard Grant
Applied Harmonic Analysis Methods for Non-Convex Optimizations and Low-Rank Matrix Analysis
非凸优化和低阶矩阵分析的应用调和分析方法
- 批准号:
2108900 - 财政年份:2021
- 资助金额:
$ 29.61万 - 项目类别:
Standard Grant
Applied Harmonic Analysis to Non-Convex Optimizations and Nonlinear Matrix Analysis
将调和分析应用于非凸优化和非线性矩阵分析
- 批准号:
1816608 - 财政年份:2018
- 资助金额:
$ 29.61万 - 项目类别:
Continuing Grant
Harmonic analysis on convex cones and its applications
凸锥调和分析及其应用
- 批准号:
16K05174 - 财政年份:2016
- 资助金额:
$ 29.61万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Harmonic analysis, non-convex optimization, and large data sets
调和分析、非凸优化和大数据集
- 批准号:
1620455 - 财政年份:2016
- 资助金额:
$ 29.61万 - 项目类别:
Standard Grant
Harmonic Analysis in Convex Geometry
凸几何中的调和分析
- 批准号:
1600753 - 财政年份:2016
- 资助金额:
$ 29.61万 - 项目类别:
Continuing Grant
Methods of harmonic analysis in convex geometry
凸几何中的调和分析方法
- 批准号:
367804-2009 - 财政年份:2013
- 资助金额:
$ 29.61万 - 项目类别:
Discovery Grants Program - Individual
Methods of harmonic analysis in convex geometry
凸几何中的调和分析方法
- 批准号:
367804-2009 - 财政年份:2012
- 资助金额:
$ 29.61万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




