Multigraded Methods for Syzygies, Arrangements, and Differential Operators
Syzygies、排列和微分算子的多级方法
基本信息
- 批准号:2001101
- 负责人:
- 金额:$ 27.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
At the heart of the research components of this project are homological objects with group actions, which arise in a wide range of areas of application, including biology, chemistry, algebraic topology and geometry, optimization, and physics, among others. The project involves the development of a host of new tools to express geometric properties algebraically, via certain families of matrices with polynomial entries. The education and broader impacts portions integrate with these projects through work with undergraduate and graduate students, as well as postdocs. The PI will also continue involvement in several mentoring initiatives, including the Enhancing Diversity in Graduate Education (EDGE) Program, Math Alliance, and Minnesota's Women in Math program; organization of regional and international conferences organization; and software development and distribution for the open source computer algebra system Macaulay2.The research components of this project seek to establish a foundational framework for each of the following: (1) free complexes corresponding to line bundle resolutions of sheaves on smooth toric varieties, (2) resolutions of certain equivariant sheaves via vector bundles over smooth toric varieties, (3) arrangements of hyperplanes, and (4) rings of differential operators for toric face rings. More specifically the research includes (respectively): (1) constructing an explicit vector bundle resolution of the diagonal for smooth toric varieties, which will yield an analogue of the celebrated Hilbert Syzygy Theorem, (2) resolutions of certain equivariant sheaves via vector bundles over smooth toric varieties, (3) A-hypergeometric polynomials in prime characteristic, and (4) rings of differential operators for toric face rings. The research will yield a host of new tools that will shed light on the underlying geometry and group actions by aiding the computation of important algebro-geometric and PDE invariants.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的研究组成部分的核心是具有群作用的同调对象,这些对象出现在广泛的应用领域,包括生物学,化学,代数拓扑和几何,优化和物理等。该项目涉及开发一系列新的工具,通过某些具有多项式项的矩阵族,以代数方式表达几何特性。教育和更广泛的影响部分通过与本科生和研究生以及博士后的工作与这些项目相结合。PI还将继续参与几项指导活动,包括加强研究生教育多样性(EDGE)计划、数学联盟和明尼苏达州妇女参与数学计划;组织区域和国际会议组织;以及开源计算机代数系统Macaulay 2的软件开发和分发。该项目的研究内容旨在为每个以下内容:(1)对应于光滑复曲面簇上层的线丛分解的自由复形,(2)光滑复曲面簇上某些等变层通过向量丛的分解,(3)超平面的排列,(4)复曲面面环的微分算子环。更具体地说,研究包括(分别):(1)构造光滑复曲面簇的对角线的显式向量丛分解,它将产生著名的Hilbert合之定理的类似物,(2)某些等变层通过光滑复曲面簇上的向量丛的分解,(3)素特征的A-超几何多项式,(4)复曲面环的微分算子环。该研究将产生一系列新的工具,通过帮助计算重要的代数几何和PDE不变量,揭示潜在的几何和群体作用。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the rank of an A$A$‐hypergeometric D$D$‐module versus the normalized volume of A$A$
关于 A$A$ 超几何 D$D$ 模块的等级与 A$A$ 标准化体积的关系
- DOI:10.1112/blms.12567
- 发表时间:2022
- 期刊:
- 影响因子:0.9
- 作者:Berkesch, Christine;Fernández‐Fernández, María‐Cruz
- 通讯作者:Fernández‐Fernández, María‐Cruz
Combinatorial aspects of virtually Cohen-Macaulay sheaves
虚拟 Cohen-Macaulay 滑轮的组合方面
- DOI:10.1112/tlm3.12036
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Berkesch, Christine;Klein, Patricia;Loper, Michael C.;Yang, Jay
- 通讯作者:Yang, Jay
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christine Berkesch其他文献
Shapes of free resolutions over a local ring
- DOI:
10.1007/s00208-011-0760-2 - 发表时间:
2011-11-23 - 期刊:
- 影响因子:1.400
- 作者:
Christine Berkesch;Daniel Erman;Manoj Kummini;Steven V. Sam - 通讯作者:
Steven V. Sam
Christine Berkesch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christine Berkesch', 18)}}的其他基金
Conference: Gender Equity in the Mathematical Study (GEMS) of Commutative Algebra
会议:交换代数数学研究(GEMS)中的性别平等
- 批准号:
2332592 - 财政年份:2023
- 资助金额:
$ 27.4万 - 项目类别:
Standard Grant
Graduate Meeting on Combinatorial Commutative Algebra
组合交换代数研究生会议
- 批准号:
2206872 - 财政年份:2022
- 资助金额:
$ 27.4万 - 项目类别:
Standard Grant
An Upper Midwest Commutative Algebra Conference
上中西部交换代数会议
- 批准号:
1953962 - 财政年份:2020
- 资助金额:
$ 27.4万 - 项目类别:
Standard Grant
Graduate Workshop in Commutative Algebra for Underrepresented Minorities
少数族裔交换代数研究生研讨会
- 批准号:
1908799 - 财政年份:2019
- 资助金额:
$ 27.4万 - 项目类别:
Standard Grant
An Upper Midwest Commutative Algebra Conference
上中西部交换代数会议
- 批准号:
1744247 - 财政年份:2017
- 资助金额:
$ 27.4万 - 项目类别:
Standard Grant
Homological Commutative Algebra and Group Actions in Geometry
几何中的同调交换代数和群作用
- 批准号:
1661962 - 财政年份:2017
- 资助金额:
$ 27.4万 - 项目类别:
Continuing Grant
Local Cohomology in Commutative Algebra and Algebraic Geometry
交换代数和代数几何中的局部上同调
- 批准号:
1700748 - 财政年份:2017
- 资助金额:
$ 27.4万 - 项目类别:
Standard Grant
Conference:Upper Midwest Commutative Algebra Colloquium; University of Wisconsin; November 14, 2015; and University of Minnesota - April, 2016
会议:上中西部交换代数座谈会;
- 批准号:
1549892 - 财政年份:2015
- 资助金额:
$ 27.4万 - 项目类别:
Standard Grant
Homological commutative algebra, polyhedral structure, and algebraic geometry
同调交换代数、多面体结构和代数几何
- 批准号:
1303083 - 财政年份:2013
- 资助金额:
$ 27.4万 - 项目类别:
Standard Grant
Homological commutative algebra, polyhedral structure, and algebraic geometry
同调交换代数、多面体结构和代数几何
- 批准号:
1440537 - 财政年份:2013
- 资助金额:
$ 27.4万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Impact of Urban Environmental Factors on Momentary Subjective Wellbeing (SWB) using Smartphone-Based Experience Sampling Methods
使用基于智能手机的体验采样方法研究城市环境因素对瞬时主观幸福感 (SWB) 的影响
- 批准号:
2750689 - 财政年份:2025
- 资助金额:
$ 27.4万 - 项目类别:
Studentship
Developing behavioural methods to assess pain in horses
开发评估马疼痛的行为方法
- 批准号:
2686844 - 财政年份:2025
- 资助金额:
$ 27.4万 - 项目类别:
Studentship
Population genomic methods for modelling bacterial pathogen evolution
用于模拟细菌病原体进化的群体基因组方法
- 批准号:
DE240100316 - 财政年份:2024
- 资助金额:
$ 27.4万 - 项目类别:
Discovery Early Career Researcher Award
Development and Translation Mass Spectrometry Methods to Determine BioMarkers for Parkinson's Disease and Comorbidities
确定帕金森病和合并症生物标志物的质谱方法的开发和转化
- 批准号:
2907463 - 财政年份:2024
- 资助金额:
$ 27.4万 - 项目类别:
Studentship
Non invasive methods to accelerate the development of injectable therapeutic depots
非侵入性方法加速注射治疗储库的开发
- 批准号:
EP/Z532976/1 - 财政年份:2024
- 资助金额:
$ 27.4万 - 项目类别:
Research Grant
Spectral embedding methods and subsequent inference tasks on dynamic multiplex graphs
动态多路复用图上的谱嵌入方法和后续推理任务
- 批准号:
EP/Y002113/1 - 财政年份:2024
- 资助金额:
$ 27.4万 - 项目类别:
Research Grant
CAREER: Nonlinear Dynamics of Exciton-Polarons in Two-Dimensional Metal Halides Probed by Quantum-Optical Methods
职业:通过量子光学方法探测二维金属卤化物中激子极化子的非线性动力学
- 批准号:
2338663 - 财政年份:2024
- 资助金额:
$ 27.4万 - 项目类别:
Continuing Grant
Conference: North American High Order Methods Con (NAHOMCon)
会议:北美高阶方法大会 (NAHOMCon)
- 批准号:
2333724 - 财政年份:2024
- 资助金额:
$ 27.4万 - 项目类别:
Standard Grant
REU Site: Computational Methods with applications in Materials Science
REU 网站:计算方法及其在材料科学中的应用
- 批准号:
2348712 - 财政年份:2024
- 资助金额:
$ 27.4万 - 项目类别:
Standard Grant
CAREER: New methods in curve counting
职业:曲线计数的新方法
- 批准号:
2422291 - 财政年份:2024
- 资助金额:
$ 27.4万 - 项目类别:
Continuing Grant