Evaluating Actions, Obstructions, and Reductions for Covers of Curves
评估曲线覆盖的动作、障碍和缩减
基本信息
- 批准号:2200418
- 负责人:
- 金额:$ 27.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project will focus on the study of curves with rare properties, by both building foundations and yielding new applications. The PI will study geometric, arithmetic, and algebraic structures of these curves, thereby developing connections between the areas of arithmetic geometry, algebraic number theory, and Galois theory. The PI will also build connections in the mathematical community by developing the VaNTAGe seminar, a virtual seminar about open conjectures in number theory and arithmetic geometry. To make the seminar more accessible and long-lasting, the PI will organize VaNTAGe activities to train graduate students and develop the VaNTAGe YouTube channel. The PI will mentor students in mathematics, for example, as the faculty advisor for the Sonia Kovalevsky day for high school students at Colorado State University. More precisely, the PI will evaluate Galois actions, cohomological obstructions, and supersingular reductions of curves. The first research project of the PI will yield results about the action of Galois groups on the cohomology of curves with automorphisms. The importance of this topic is that it will shed light on the absolute Galois group of the field of rational numbers, as understood by the work of Grothendieck, Anderson, and Ihara. To do this project, the PI will evaluate maps in cohomology for Belyi curves, including the classifying map, the transgression map, and obstruction maps. In the second research project, the PI will generalize a result of Elkies by proving that certain curves of genus four have infinitely many primes of supersingular reduction. This project will be centered on special families of cyclic covers of the projective line branched at four points, and their associated Hurwitz spaces and unitary Shimura varieties. The strategy will use uniformization, quadratic forms, complex multiplication, and reduction techniques. In the third research project, the PI will count the number of supersingular curves in one-dimensional families of curves with automorphisms. This project will shed light on conjectures of Oort about the existence of supersingular curves of arbitrary genus and will generalize the Eichler-Deuring mass formula to the case of Hurwitz spaces of cyclic covers. A unifying theme of the projects is that they will demonstrate the rich interplay between geometric and arithmetic techniques for curves with automorphisms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将通过建立基础和产生新的应用,重点研究具有罕见特性的曲线。PI将研究这些曲线的几何,算术和代数结构,从而发展算术几何,代数数论和伽罗瓦理论之间的联系。PI还将通过开发Vantage研讨会在数学界建立联系,这是一个关于数论和算术几何开放式课程的虚拟研讨会。 为了使研讨会更容易和持久,PI将组织Vantage活动,以培训研究生,并开发Vantage YouTube频道。PI将指导学生的数学,例如,作为教师顾问的索尼娅科瓦列夫斯基一天的高中生在科罗拉多州立大学。 更准确地说,PI将评估伽罗瓦行动,上同调障碍和超奇异约化曲线。PI的第一个研究项目将产生关于伽罗瓦群对具有自同构的曲线的上同调的作用的结果。这个主题的重要性在于它将阐明有理数领域的绝对伽罗瓦群,正如格罗滕迪克、安德森和伊原的工作所理解的那样。 为了完成这个项目,PI将评估Belyi曲线的上同调图,包括分类图,海侵图和障碍图。 在第二个研究项目中,PI将通过证明亏格为4的某些曲线具有无限多个超奇异约化素数来推广Elkies的结果。 这个项目将集中在特殊的家庭循环覆盖的投影线分支在四个点,和他们相关的赫维茨空间和酉志村品种。 该策略将使用均匀化,二次形式,复数乘法和减少技术。 在第三个研究项目中,PI将计算具有自同构的一维曲线族中超奇异曲线的数量。 这个项目将阐明奥尔特关于超奇异曲线的存在性的假设,并将Eichler-Deuring质量公式推广到循环覆盖的Hurwitz空间的情况。 这些项目的一个统一主题是,它们将展示几何和算术技术与自同构曲线之间的丰富相互作用。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rachel Pries其他文献
Alternating group covers of the affine line
- DOI:
10.1007/s11856-011-0165-7 - 发表时间:
2012-06-12 - 期刊:
- 影响因子:0.800
- 作者:
Jeremy Muskat;Rachel Pries - 通讯作者:
Rachel Pries
The automorphism groups of a family of maximal curves
- DOI:
10.1016/j.jalgebra.2012.03.036 - 发表时间:
2012-07-01 - 期刊:
- 影响因子:
- 作者:
Robert Guralnick;Beth Malmskog;Rachel Pries - 通讯作者:
Rachel Pries
The Galois action on the lower central series of the fundamental group of the Fermat curve
- DOI:
10.1007/s11856-023-2571-z - 发表时间:
2023-11-13 - 期刊:
- 影响因子:0.800
- 作者:
Rachel Davis;Rachel Pries;Kirsten Wickelgren - 通讯作者:
Kirsten Wickelgren
Mass formula for non-ordinary curves in one dimensional families
- DOI:
10.1007/s00229-024-01610-x - 发表时间:
2025-01-17 - 期刊:
- 影响因子:0.600
- 作者:
Renzo Cavalieri;Rachel Pries - 通讯作者:
Rachel Pries
Rachel Pries的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rachel Pries', 18)}}的其他基金
Measuring Galois Actions and Moduli Spaces
测量伽罗瓦作用和模空间
- 批准号:
1901819 - 财政年份:2019
- 资助金额:
$ 27.03万 - 项目类别:
Continuing Grant
Moduli of curves in positive characteristic: stratifications and filtrations
正特性曲线模数:分层和过滤
- 批准号:
1101712 - 财政年份:2011
- 资助金额:
$ 27.03万 - 项目类别:
Standard Grant
The p-rank and ramification structure of covers of curves in characteristic p
特征p中曲线覆盖的p阶和分支结构
- 批准号:
0701303 - 财政年份:2007
- 资助金额:
$ 27.03万 - 项目类别:
Standard Grant
Moduli spaces for wildly ramified covers of curves
曲线的广泛分支覆盖的模空间
- 批准号:
0400461 - 财政年份:2004
- 资助金额:
$ 27.03万 - 项目类别:
Standard Grant
相似海外基金
The role of youth voluntary actions in Disaster Risk Reduction in the Ganges Brahmaputra and Meghna (GBM) delta
青年志愿行动在雅鲁藏布江和梅格纳河三角洲减少灾害风险中的作用
- 批准号:
2593674 - 财政年份:2025
- 资助金额:
$ 27.03万 - 项目类别:
Studentship
Group Actions, Rigidity, and Invariant Measures
群体行动、刚性和不变措施
- 批准号:
2400191 - 财政年份:2024
- 资助金额:
$ 27.03万 - 项目类别:
Standard Grant
Conference: Groups Actions and Rigidity: Around the Zimmer Program
会议:团体行动和刚性:围绕 Zimmer 计划
- 批准号:
2349566 - 财政年份:2024
- 资助金额:
$ 27.03万 - 项目类别:
Standard Grant
Water IMPACT: Water emissions forecasting tool to Introduce the Modelling Potential of water quality Actions to reach Climate-change Targets
水影响:水排放预测工具,介绍水质建模潜力 实现气候变化目标的行动
- 批准号:
10103499 - 财政年份:2024
- 资助金额:
$ 27.03万 - 项目类别:
Collaborative R&D
Actions required to secure the large-scale deployment of the leading CDR approaches to meet EU climate targets
确保大规模部署领先的 CDR 方法以实现欧盟气候目标所需采取的行动
- 批准号:
10066844 - 财政年份:2023
- 资助金额:
$ 27.03万 - 项目类别:
EU-Funded
The neural and glial bases of diet-induced deficits in control of reward-seeking actions
饮食引起的奖励寻求行为控制缺陷的神经和神经胶质基础
- 批准号:
490692 - 财政年份:2023
- 资助金额:
$ 27.03万 - 项目类别:
Operating Grants
An empirical analysis of the relationship between strategic actions in response to uncertainty in family businesses and performance
家族企业应对不确定性的战略行动与绩效关系的实证分析
- 批准号:
23K01459 - 财政年份:2023
- 资助金额:
$ 27.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Revealing everyday resistance during the war in Bosnia: how did ordinary people's actions disrupt conflict and promote peace?
揭示波斯尼亚战争期间的日常抵抗:普通民众的行为如何平息冲突、促进和平?
- 批准号:
2887258 - 财政年份:2023
- 资助金额:
$ 27.03万 - 项目类别:
Studentship
Solving conflicts: Modulation of choices and actions in the fly.
解决冲突:即时调整选择和行动。
- 批准号:
BB/W016249/1 - 财政年份:2023
- 资助金额:
$ 27.03万 - 项目类别:
Research Grant
Conference: Groups, Actions, and Geometries
会议:群体、行动和几何
- 批准号:
2309427 - 财政年份:2023
- 资助金额:
$ 27.03万 - 项目类别:
Standard Grant