RUI: Arboreal Galois Groups and Nonarchimedean Dynamics

RUI:树栖伽罗瓦群和非阿基米德动力学

基本信息

  • 批准号:
    2101925
  • 负责人:
  • 金额:
    $ 19.01万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

This project concerns certain open questions in arithmetic dynamics, a field bridging number theory and dynamical systems. While the number-theoretic study of rational numbers and polynomial equations lies far from the chaos and fractals that arise in the study of dynamics, the two are tied together in this setting by p-adic dynamics. In addition, the PI will supervise undergraduate students in an REU summer research project to bolster their mathematical training. Any computational data produced in the REU will be published or posted on the web, for the benefit of the larger research community. Results from the project will also be disseminated via websites such as arXiv and via publication in mathematical journals.The specific questions to be studied arise in two areas within arithmetic dynamics: first, the action of Galois groups on dynamical orbits, and second, moduli spaces of nonarchimedean dynamical systems. On the Galois side, certain p-adic dynamical features are essential to exhibiting enough Galois automorphisms to generate the complicated Galois groups in question. On the moduli space side, nonarchimedean dynamics has evolved into an established field of research, but relatively little is currently known about one-parameter families of nonarchimedean dynamical systems. The project will focus on dynamics on the Berkovich projective line, the appropriate space on which one-variable nonarchimedean systems act. The problems to be explored are new areas that are continuations of rich theories with long histories in dynamics, Galois theory, and nonarchimedean analysis. In particular, the first topic promises to provide new dynamical tools for addressing the study of absolute Galois groups, while the second promises new approaches to moduli problems in arithmetic dynamical systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目涉及算术动力学中的某些开放问题,这是一个连接数论和动力系统的领域。虽然有理数和多项式方程的数论研究远离动力学研究中出现的混沌和分形,但两者在这种情况下通过p-adic动力学联系在一起。此外,PI将在REU暑期研究项目中监督本科生,以加强他们的数学训练。在REU产生的任何计算数据将被发布或张贴在网络上,为更大的研究社区的利益。该项目的成果也将通过网站,如arXiv和通过出版物在数学journals.The具体的问题进行研究,出现在算术动力学的两个领域:第一,伽罗瓦集团的动态轨道的行动,第二,非阿基米德动力系统的模空间。在伽罗瓦方面,某些p-adic动力学特征对于展示足够的伽罗瓦自同构以生成所讨论的复杂伽罗瓦群是必不可少的。在模空间方面,非阿基米德动力学已经发展成为一个既定的研究领域,但目前对非阿基米德动力系统的单参数族知之甚少。该项目将侧重于动力学的伯科维奇投影线,适当的空间上的一个变量的非阿基米德系统的行为。要探讨的问题是新的领域,是延续丰富的理论与长期的历史动力学,伽罗瓦理论和nonarchimedean分析。特别是,第一个主题承诺提供新的动力学工具,解决绝对伽罗瓦群的研究,而第二个承诺新的方法,模数问题的算术动力systems.This奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Survey of Non-Archimedean Dynamics
非阿基米德动力学综述
J-stability in non-archimedean dynamics
非阿基米德动力学中的 J 稳定性
  • DOI:
    10.1016/j.aim.2022.108204
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Benedetto, Robert L.;Lee, Junghun
  • 通讯作者:
    Lee, Junghun
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Benedetto其他文献

Robert Benedetto的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Benedetto', 18)}}的其他基金

RUI: Galois Action and Entropy in Non-archimedean Dynamics
RUI:非阿基米德动力学中的伽罗瓦作用和熵
  • 批准号:
    1501766
  • 财政年份:
    2015
  • 资助金额:
    $ 19.01万
  • 项目类别:
    Continuing Grant
RUI: Families, Ramification, and Berkovich Spaces in Non-archimedean Dynamics
RUI:非阿基米德动力学中的族、分支和伯科维奇空间
  • 批准号:
    1201341
  • 财政年份:
    2012
  • 资助金额:
    $ 19.01万
  • 项目类别:
    Standard Grant
RUI: Boundedness questions in arithmetic dynamics
RUI:算术动力学中的有界性问题
  • 批准号:
    0901494
  • 财政年份:
    2009
  • 资助金额:
    $ 19.01万
  • 项目类别:
    Standard Grant
RUI: Heights, Dynamics, and Preperiodic Points
RUI:高度、动态和前期点
  • 批准号:
    0600878
  • 财政年份:
    2006
  • 资助金额:
    $ 19.01万
  • 项目类别:
    Standard Grant
Workshop on P-Adic Dynamics
P-Adic 动力学研讨会
  • 批准号:
    0500587
  • 财政年份:
    2005
  • 资助金额:
    $ 19.01万
  • 项目类别:
    Standard Grant
Non-archimedean discrete dynamical systems
非阿基米德离散动力系统
  • 批准号:
    0071541
  • 财政年份:
    2000
  • 资助金额:
    $ 19.01万
  • 项目类别:
    Fellowship Award

相似海外基金

Where in the canopy do monkeys eat fruits?: Spatial niche separation of the rainforest arboreal frugivores
猴子在树冠的什么地方吃水果?:雨林树栖食果动物的空间生态位分离
  • 批准号:
    21K15173
  • 财政年份:
    2021
  • 资助金额:
    $ 19.01万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: RUI: Hydrology of the vegetation on vegetation: Comparison and scaling of rainfall interception and solute alteration by common arboreal epiphytes.
合作研究:RUI:植被对植被的水文学:常见树栖附生植物对降雨拦截和溶质改变的比较和缩放。
  • 批准号:
    2209775
  • 财政年份:
    2021
  • 资助金额:
    $ 19.01万
  • 项目类别:
    Standard Grant
Trees Revisited: Exploring the Nature of Identity in Arboreal Poetry
重温树木:探索树栖诗歌中的身份本质
  • 批准号:
    2607393
  • 财政年份:
    2021
  • 资助金额:
    $ 19.01万
  • 项目类别:
    Studentship
Collaborative Research: RUI: Hydrology of the vegetation on vegetation: Comparison and scaling of rainfall interception and solute alteration by common arboreal epiphytes.
合作研究:RUI:植被对植被的水文学:常见树栖附生植物对降雨拦截和溶质改变的比较和缩放。
  • 批准号:
    1954322
  • 财政年份:
    2020
  • 资助金额:
    $ 19.01万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Hydrology of the vegetation on vegetation: Comparison and scaling of rainfall interception and solute alteration by common arboreal epiphytes.
合作研究:RUI:植被对植被的水文学:常见树栖附生植物对降雨拦截和溶质改变的比较和缩放。
  • 批准号:
    1954538
  • 财政年份:
    2020
  • 资助金额:
    $ 19.01万
  • 项目类别:
    Standard Grant
Comparative development of intercalary elements in the first finger joint of neobatrachians: the origin of arboreal frogs
新蛙类第一指关节闰元素的比较发育:树蛙的起源
  • 批准号:
    20K06786
  • 财政年份:
    2020
  • 资助金额:
    $ 19.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
FUTURE OAK: Characterising and engineering the oak microbiome to future-proof an arboreal icon
未来橡树:表征和改造橡树微生物组,打造面向未来的树栖标志
  • 批准号:
    BB/T01069X/1
  • 财政年份:
    2020
  • 资助金额:
    $ 19.01万
  • 项目类别:
    Research Grant
Collaborative Research: RUI: Hydrology of the vegetation on vegetation: Comparison and scaling of rainfall interception and solute alteration by common arboreal epiphytes.
合作研究:RUI:植被对植被的水文学:常见树栖附生植物对降雨拦截和溶质改变的比较和缩放。
  • 批准号:
    1954907
  • 财政年份:
    2020
  • 资助金额:
    $ 19.01万
  • 项目类别:
    Standard Grant
Symplectic Surfaces, Lefschetz Fibrations, and Arboreal Skeleta
辛曲面、莱夫谢茨纤维和树栖骨骼
  • 批准号:
    1904074
  • 财政年份:
    2019
  • 资助金额:
    $ 19.01万
  • 项目类别:
    Continuing Grant
Ecological determinants and arboreal feeding positional behaviors in Pan troglodytes, with implications for hominoid evolution
泛穴居动物的生态决定因素和树栖进食位置行为,对类人猿进化的影响
  • 批准号:
    1850328
  • 财政年份:
    2019
  • 资助金额:
    $ 19.01万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了