NSF Center for Sustainable Nanotechnology

NSF 可持续纳米技术中心

基本信息

  • 批准号:
    2001611
  • 负责人:
  • 金额:
    $ 2000万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Cooperative Agreement
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

The NSF Center for Sustainable Nanotechnology (CSN) seeks to understand how nanoparticles, particles that are at least 10,000 times smaller than the width of a human hair, transform and interact in and with water and biological systems. Nanoparticles can vary in elemental composition, structure, and properties, which makes them useful for industries ranging from electronics, to batteries, to cosmetics. As nanoparticle use becomes more widespread, however, they are appearing in the environment. When nanoparticles are incorporated into biological systems they may induce unusual behavior that is beneficial or harmful, but is as of yet poorly understood. For instance, due to their small size, some nanoparticles can easily pass through some cell membranes. With very high surface area to volume ratios, nanoparticles can also be highly reactive, which may trigger chemical changes in the environment or to the nanoparticle itself. The CSN applies a "make, measure, model" strategy to develop new functional nanomaterials with increased sustainability and reduced biological impact. Expertise with synthetic methods, in situ analytical techniques, and computational methods is leveraged to understand, predict, and control nanoparticle properties and their chemical interactions with the environment and biological systems. The CSN addresses key knowledge gaps in the areas of nanoparticle properties which will result in better prediction of specific nanoparticle chemical properties and their biological interactions. This will ultimately serve the national interest by allowing for the design of more effective and more benign nanoparticles for many applications. Some of the systems the CSN investigates include: transition metal oxides and phosphates and two-dimensional quantum materials; gold, diamond and silicon based nanoparticles with defined organic and inorganic surface coatings; and as well as emerging nanoparticle compositions that exhibit fundamental new science and utility, such as those based on polymeric carbon dots, and nanovacancies in nanodiamond. This integrated, multi-institutional, and collaborative team involves researchers from the University of Wisconsin-Madison, University of Minnesota, Boston University, Georgia Institute of Technology, Johns Hopkins University, Augsburg University, University of California-Riverside, University of Wisconsin-Milwaukee, University of Iowa, University of Illinois at Urbana-Champaign, University of Maryland Baltimore County, Pacific Northwest National Laboratory, and the Connecticut Agricultural Experimental Station. The Center has a strong innovation component that involves the translation of research results into intellectual property, as well as other collaborations with several industrial partners. The CSN has an inclusive and transparent management approach that enables a positive Center climate and facilitates the integration of student learning across Center activities. Students broaden and deepen their technical expertise and grant writing through student laboratory exchanges and seed grant opportunities. The CSN places special emphasis on communication training. Example mechanisms to develop student communication skills are the popular Sustainable Nano Blog, http://sustainable-nano.com/, and the Spanish language-based Nano Sostenible Blog, http://nano-sostenible.com/. These are key components of the Center's informal science communication efforts, and students have ample opportunity to participate in these educational websites. Webinars on fostering technical innovation, internship opportunities, and opportunities to serve on the advisory board are mechanisms through which students further develop their professional skill sets. The CSN is committed to broadening participation efforts and incorporates summer research experiences for undergraduates and veterans, and relationships with minority-serving institutions, primarily undergraduate institutions, and community colleges as ways to address inclusivity. The strong focus on the CSN climate helps to ensure all participants feel welcomed, valued, and supported. Partnerships with the University of Puerto Rico at Cayey and Rio Piedras, the University of Texas Rio Grand Valley, Tuskegee University, and Georgia State University help to ensure that a diverse group of students can participate in the CSN where they develop not only the skills mentioned above, but also an understanding of the need to approach questions in chemistry with an awareness of sustainability, inclusivity, and interdisciplinarity. The CSN experience will prepare participants to make unique future contributions as members of the chemical workforce. The CSN organizes their goals along four focus areas. One area focuses on establishing nanoparticle structure–function relationships. Chemical composition, size, shape, and organic or inorganic surface modifications are investigated with a combination of computational and experimental approaches. Transition metal oxides, nanoparticles comprised of earth-abundant elements, and nanoparticles that demonstrate novel properties or new utility are focal points. A second area of investigation centers on understanding nanoparticle transformations that occur in the environment and in biological media. Chemical changes in the nanoparticle core, the roles of inorganic and organic ions to impact nanoparticle stability, and surface structure are some of the areas explored. The third CSN thrust area explores nanoparticle coatings, referred to as coronas, formed by their exposure to the environment or biological systems at aqueous interfaces as a function of time. Analytical and computational approaches are developed to characterize and model the chemical nature and formation mechanisms of nanoparticle coronas. The fourth area is a chemistry-focused investigation of the physicochemical properties of nanoparticles and their interactions with biological systems. Nanoparticles with well-defined composition, structure, and surface chemistry are used to correlate, better understand, and predict nanoparticle physicochemical properties, spatial and temporal interactions at biological surfaces, and the direct or indirect effects on molecular interactions in cells and organisms. The CSN enriches the chemistry community by providing new tools for characterizing chemical processes at nanoparticle surfaces and by developing experimentally validated computational methods to predict the molecular-level behavior of complex materials in aqueous media. CSN participants are engaged in activities aimed at facilitating the creation and dissemination of knowledge, enhancing innovation and translation of research products and outcomes to the commercial sector, and providing unique education and training opportunities for students and postdoctoral researchers from diverse backgrounds.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
NSF可持续纳米技术中心(CSN)试图了解纳米粒子,这种比人类头发宽度至少小1万倍的粒子,是如何在水和生物系统中转化和相互作用的。纳米粒子的元素组成、结构和性质各不相同,这使得它们在电子、电池和化妆品等行业都很有用。然而,随着纳米粒子的应用越来越广泛,它们也开始出现在环境中。当纳米颗粒被纳入生物系统时,它们可能会引起有益或有害的不寻常行为,但迄今为止知之甚少。例如,由于它们的体积小,一些纳米粒子可以很容易地穿过一些细胞膜。由于具有非常高的表面积与体积比,纳米颗粒也可能具有高活性,这可能会引发环境或纳米颗粒本身的化学变化。CSN采用“制造、测量、模型”的策略来开发新的功能性纳米材料,增加可持续性,减少生物影响。利用合成方法、原位分析技术和计算方法的专业知识来理解、预测和控制纳米颗粒的性质及其与环境和生物系统的化学相互作用。CSN解决了纳米粒子性质领域的关键知识空白,这将导致更好地预测特定纳米粒子的化学性质及其生物相互作用。这将最终为国家利益服务,因为它允许为许多应用设计更有效、更良性的纳米粒子。CSN研究的一些系统包括:过渡金属氧化物和磷酸盐以及二维量子材料;具有明确的有机和无机表面涂层的金、金刚石和硅基纳米颗粒;同时,新兴的纳米粒子组合物也展现出了基础性的新科学和实用价值,比如基于聚合碳点的纳米粒子组合物,以及纳米金刚石中的纳米空缺。这个综合的、多机构的协作团队包括来自威斯康星大学麦迪逊分校、明尼苏达大学、波士顿大学、佐治亚理工学院、约翰霍普金斯大学、奥格斯堡大学、加州大学河滨分校、威斯康星大学密尔沃基分校、爱荷华大学、伊利诺伊大学厄巴纳-香槟分校、马里兰大学巴尔的摩县分校、西北太平洋国家实验室、以及康涅狄格农业实验站。该中心拥有强大的创新组成部分,包括将研究成果转化为知识产权,以及与几个工业伙伴的其他合作。CSN采用包容和透明的管理方法,营造积极的中心氛围,促进学生在中心活动中的学习整合。通过学生实验室交流和种子基金机会,学生拓宽和深化他们的技术专长和论文写作。国别战略说明特别强调沟通训练。培养学生沟通技巧的例子有流行的可持续纳米博客http://sustainable-nano.com/和基于西班牙语的纳米可听博客http://nano-sostenible.com/。这些是中心非正式科学传播工作的关键组成部分,学生有充分的机会参与这些教育网站。促进技术创新的网络研讨会、实习机会和在顾问委员会任职的机会是学生进一步发展其专业技能的机制。CSN致力于扩大参与努力,并将本科生和退伍军人的暑期研究经验,以及与少数族裔服务机构(主要是本科院校)和社区学院的关系纳入其中,以解决包容性问题。对CSN环境的强烈关注有助于确保所有参与者都感到受到欢迎、重视和支持。与波多黎各大学Cayey分校和b里约热内卢Piedras分校,德克萨斯大学b里约热内卢Grand Valley分校,塔斯基吉大学和佐治亚州立大学的合作伙伴关系有助于确保不同群体的学生能够参与CSN,他们不仅可以培养上述技能,还可以理解需要以可持续性,包容性和跨学科的意识来解决化学问题。CSN的经验将使参与者为今后作为化学工作人员作出独特的贡献做好准备。CSN沿着四个重点领域组织了他们的目标。一个领域侧重于建立纳米颗粒的结构功能关系。化学成分,大小,形状,和有机或无机表面改性的研究与计算和实验方法的结合。过渡金属氧化物,由地球上丰富的元素组成的纳米颗粒,以及表现出新特性或新用途的纳米颗粒是焦点。第二个研究领域集中在理解纳米粒子在环境和生物介质中发生的转化。纳米颗粒核心的化学变化,无机和有机离子对纳米颗粒稳定性的影响以及表面结构是研究的一些领域。第三个CSN推力区域探索纳米粒子涂层,称为冠状体,它们暴露于环境或水界面的生物系统中作为时间的函数而形成。分析和计算方法的发展,表征和模型的化学性质和形成机制的纳米粒子电晕。第四个领域是以化学为重点的纳米粒子的物理化学性质及其与生物系统的相互作用的研究。具有明确定义的组成、结构和表面化学的纳米颗粒被用于关联、更好地理解和预测纳米颗粒的物理化学性质、生物表面的空间和时间相互作用,以及对细胞和生物体中分子相互作用的直接或间接影响。CSN通过提供表征纳米颗粒表面化学过程的新工具,以及通过开发实验验证的计算方法来预测复杂材料在水介质中的分子水平行为,丰富了化学界。CSN参与者参与的活动旨在促进知识的创造和传播,加强创新,并将研究成果和成果转化为商业部门,以及为来自不同背景的学生和博士后研究人员提供独特的教育和培训机会。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(88)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Lipophilicity of Cationic Ligands Promotes Irreversible Adsorption of Nanoparticles to Lipid Bilayers.
阳离子配体的亲脂性促进纳米颗粒对脂质双层的不可逆吸附。
  • DOI:
    10.1021/acsnano.0c09732
  • 发表时间:
    2021-04-27
  • 期刊:
  • 影响因子:
    17.1
  • 作者:
    Lochbaum, Christian A.;Chew, Alex K.;Zhang, Xianzhi;Rotello, Vincent;Van Lehn, Reid C.;Pedersen, Joel A.
  • 通讯作者:
    Pedersen, Joel A.
Colloidal Stabilization of Hydrophobic InSe 2D Nanosheets in a Model Environmental Aqueous Solution and their Impact on Shewanella oneidensis MR-1
  • DOI:
    10.1039/d3en00382e
  • 发表时间:
    2024-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shreyasi Sengupta;S. Ambade;Tana O'Keefe;Falak Tawakalna;Jenny K. Hedlund Orbeck;Robert J. Hamers
  • 通讯作者:
    Shreyasi Sengupta;S. Ambade;Tana O'Keefe;Falak Tawakalna;Jenny K. Hedlund Orbeck;Robert J. Hamers
DNA delivery by high aspect ratio nanomaterials to algal chloroplasts
高纵横比纳米材料将 DNA 递送至藻类叶绿体
  • DOI:
    10.1039/d3en00268c
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Newkirk, Gregory M.;Jeon, Su-Ji;Kim, Hye-In;Sivaraj, Supreetha;De Allende, Pedro;Castillo, Christopher;Jinkerson, Robert E.;Giraldo, Juan Pablo
  • 通讯作者:
    Giraldo, Juan Pablo
Metal Release Mechanism and Electrochemical Properties of Lix(Ni1/3Mn1/3Co1/3)O2
  • DOI:
    10.3390/app12084065
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Blake G. Hudson;S. Mason
  • 通讯作者:
    Blake G. Hudson;S. Mason
Sulfolipid density dictates the extent of carbon nanodot interaction with chloroplast membranes
  • DOI:
    10.1039/d2en00158f
  • 发表时间:
    2022-06-17
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Kim,Kyoungtea;Jeon,Su-Ji;Pedersen,Joel A.
  • 通讯作者:
    Pedersen,Joel A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Hamers其他文献

Synthesis and characterization of alkylsilane ethers with oligo(ethylene oxide) substituents for safe electrolytes in lithium-ion batteries
用于锂离子电池安全电解质的具有低聚环氧乙烷取代基的烷基硅烷醚的合成和表征
  • DOI:
    10.1039/c0jm01596b
  • 发表时间:
    2010-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lingzhi Zhang;Leslie Lyons;Jocelyn Newhouse;Zhengcheng Zhang;Megan Straughan;Zonghai Chen;Khalil Amine;Robert Hamers;Robert West
  • 通讯作者:
    Robert West

Robert Hamers的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Hamers', 18)}}的其他基金

Photoelectron Emission at Semiconductor-Liquid Interfaces
半导体-液体界面处的光电子发射
  • 批准号:
    1904106
  • 财政年份:
    2019
  • 资助金额:
    $ 2000万
  • 项目类别:
    Standard Grant
RAISE-TAQS: Quantum-based chemical sensing
RAISE-TAQS:基于量子的化学传感
  • 批准号:
    1839174
  • 财政年份:
    2018
  • 资助金额:
    $ 2000万
  • 项目类别:
    Standard Grant
Needs and Opportunities for Mid-Scale Instrumentation in Chemistry
化学中中型仪器的需求和机遇
  • 批准号:
    1644338
  • 财政年份:
    2016
  • 资助金额:
    $ 2000万
  • 项目类别:
    Standard Grant
Center for Sustainable Nanotechnology
可持续纳米技术中心
  • 批准号:
    1503408
  • 财政年份:
    2015
  • 资助金额:
    $ 2000万
  • 项目类别:
    Cooperative Agreement
Photoelectron Emission at Diamond-Liquid Interfaces
金刚石-液体界面处的光电子发射
  • 批准号:
    1507432
  • 财政年份:
    2015
  • 资助金额:
    $ 2000万
  • 项目类别:
    Continuing Grant
Functional Carbon Nano-skins: Integrating Nanostructured Oxides with Molecular Systems
功能性碳纳米皮:纳米结构氧化物与分子系统的集成
  • 批准号:
    1310293
  • 财政年份:
    2013
  • 资助金额:
    $ 2000万
  • 项目类别:
    Standard Grant
Photoelectron Emission at Diamond-Liquid Interfaces
金刚石-液体界面处的光电子发射
  • 批准号:
    1207281
  • 财政年份:
    2012
  • 资助金额:
    $ 2000万
  • 项目类别:
    Continuing Grant
CCI Phase 1: Center for Sustainable Nanotechnology
CCI 第一阶段:可持续纳米技术中心
  • 批准号:
    1240151
  • 财政年份:
    2012
  • 资助金额:
    $ 2000万
  • 项目类别:
    Standard Grant
Multifunctional Molecular Interfaces to Metal Oxide Surfaces
金属氧化物表面的多功能分子界面
  • 批准号:
    0911543
  • 财政年份:
    2009
  • 资助金额:
    $ 2000万
  • 项目类别:
    Continuing Grant
Electrocatalytically Active Molecule-Nanostructure Hybrid Materials
电催化活性分子-纳米结构杂化材料
  • 批准号:
    0706559
  • 财政年份:
    2008
  • 资助金额:
    $ 2000万
  • 项目类别:
    Continuing Grant

相似国自然基金

金刚石NV center与磁子晶体强耦合的混合量子系统研究
  • 批准号:
    12375018
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
金刚石SiV center与声子晶体强耦合的新型量子体系研究
  • 批准号:
    92065105
  • 批准年份:
    2020
  • 资助金额:
    80.0 万元
  • 项目类别:
    重大研究计划
金刚石NV center与磁介质超晶格表面声子极化激元强耦合的新型量子器件研究
  • 批准号:
    11774285
  • 批准年份:
    2017
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
室温下金刚石晶体内N-V center单电子自旋量子比特研究
  • 批准号:
    10974251
  • 批准年份:
    2009
  • 资助金额:
    40.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Data-Driven Hardware and Software Techniques to Enable Sustainable Data Center Services
职业:数据驱动的硬件和软件技术,以实现可持续的数据中心服务
  • 批准号:
    2340042
  • 财政年份:
    2024
  • 资助金额:
    $ 2000万
  • 项目类别:
    Continuing Grant
IUCRC Planning Grant New York University: Center for Decarbonizing Chemical Manufacturing Using Sustainable Electrification (DC-MUSE)
IUCRC 规划拨款 纽约大学:利用可持续电气化实现化学制造脱碳中心 (DC-MUSE)
  • 批准号:
    2231429
  • 财政年份:
    2023
  • 资助金额:
    $ 2000万
  • 项目类别:
    Standard Grant
IUCRC Planning Grant University of Colorado Boulder: Center for Decarbonizing Chemical Manufacturing Using Sustainable Electrification (DC-MUSE)
IUCRC 规划拨款科罗拉多大学博尔德分校:利用可持续电气化实现化学制造脱碳中心 (DC-MUSE)
  • 批准号:
    2231617
  • 财政年份:
    2023
  • 资助金额:
    $ 2000万
  • 项目类别:
    Standard Grant
CCI Phase I: NSF Center for Sustainable Photoredox Catalysis (SuPRCat)
CCI 第一阶段:NSF 可持续光氧化还原催化中心 (SuPRCat)
  • 批准号:
    2318141
  • 财政年份:
    2023
  • 资助金额:
    $ 2000万
  • 项目类别:
    Standard Grant
Planning: CRISES: Southeast Center for Just, Resilient, and Sustainable Ecosystems (SECURE)
规划:危机:东南正义、弹性和可持续生态系统中心(安全)
  • 批准号:
    2334298
  • 财政年份:
    2023
  • 资助金额:
    $ 2000万
  • 项目类别:
    Standard Grant
IUCRC Phase II Arizona State University Site: Center for Efficient Vehicles and Sustainable Transportation Systems (EVSTS)
IUCRC 第二期亚利桑那州立大学网站:高效车辆和可持续交通系统中心 (EVSTS)
  • 批准号:
    2137295
  • 财政年份:
    2022
  • 资助金额:
    $ 2000万
  • 项目类别:
    Continuing Grant
IUCRC Phase II UT Austin Site: Center for Efficient Vehicles and Sustainable Transportation Systems (EVSTS)
IUCRC 二期 UT 奥斯汀基地:高效车辆和可持续交通系统中心 (EVSTS)
  • 批准号:
    2137274
  • 财政年份:
    2022
  • 资助金额:
    $ 2000万
  • 项目类别:
    Continuing Grant
IUCRC Phase II University of Louisville: Center for Efficient Vehicles and Sustainable Transportation Systems (EVSTS)
IUCRC 第二阶段路易斯维尔大学:高效车辆和可持续交通系统中心 (EVSTS)
  • 批准号:
    2147117
  • 财政年份:
    2022
  • 资助金额:
    $ 2000万
  • 项目类别:
    Continuing Grant
NSF Engineering Research Center for Advancing Sustainable and Distributed Fertilizer Production (CASFER)
NSF 促进可持续和分布式肥料生产工程研究中心 (CASFER)
  • 批准号:
    2133576
  • 财政年份:
    2022
  • 资助金额:
    $ 2000万
  • 项目类别:
    Cooperative Agreement
IUCRC Phase II University of Alabama: Center for Efficient Vehicles and Sustainable Transportation Systems (EVSTS)
IUCRC 第二阶段阿拉巴马大学:高效车辆和可持续交通系统中心 (EVSTS)
  • 批准号:
    2137275
  • 财政年份:
    2022
  • 资助金额:
    $ 2000万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了