Photoelectron Emission at Semiconductor-Liquid Interfaces

半导体-液体界面处的光电子发射

基本信息

  • 批准号:
    1904106
  • 负责人:
  • 金额:
    $ 52万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-15 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

PART 1: NON-TECHNICAL SUMMARY This research project, supported by the Solid State and Materials Chemistry program at NSF, focuses on new approaches to achieving light-induced electron emission into water and other non-vacuum environments using solid-state materials. Electrons in water and other liquids have many unusual and important properties, including the ability to initiate very difficult chemical reactions. While nearly all other electron-emitting materials are unstable in water, diamond thin films are chemically stable and able to emit electrons into water, air, and other non-vacuum environments, but only when illuminated with ultraviolet light. In this project, researchers are conducting fundamental research on diamond films and other solid-state materials with the goal of enhancing efficiency and stability of light-induced electron emission. Research includes investigating the fundamental mechanisms involved in light-induced electron emission and exploring new approaches to enhancing the efficiency of this process by manipulating the optical properties of laboratory-grown diamond films. This work could lead to a new generation of highly stable, versatile and efficient electron emitters that could be used to initiate high-energy chemical reactions and would have broader use in other technologies such as optical detectors. This project incorporates advanced training and professional development opportunities for students and postdoctoral scholars and includes efforts to increase the diversity of the scientific workforce by providing summer research opportunities for students from under-represented groups. PART 2: TECHNICAL SUMMARY This research, supported by the Solid State and Materials Chemistry program at NSF, is aimed at understanding the atomic-scale factors that control the ability of diamond and related wide-bandgap semiconductors to emit electrons into water and other non-vacuum environments. Hydrogen-terminated surfaces of diamond are chemically stable and exhibit negative electron affinity, thereby yielding barrier-free emission of conduction-band electrons into water and other non-vacuum environments. However, excitation of electrons across the diamond bandgap requires deep ultraviolet light with wavelengths less than 220 nm. This research explores the formation, optical properties, and photoelectrochemical properties of heterostructures coupling diamond with optically active materials that can inject electrons into its conduction band more efficiently using longer-wavelength light. One approach involves incorporating nanoparticles that have low workfunctions or plasmonic resonances into diamond films. Detailed measurements of photoelectrochemical response and electron emission properties as a function of wavelength and other parameters are being used to extract fundamental insights into the mechanisms of electron excitation and emission. Exploratory work is being performed using other wide-bandgap materials with high-lying conduction bands. Graduate students and postdoctoral scholars supported on this project receive extensive mentoring and professional development opportunities. This project also supports summer research for students from under-represented groups and broader efforts to enhance diversity of the scientific work force. Ultimately this research provides fundamental new insights into the nature of internal photoemission processes and may lead to new materials and structures that can act as stable, energy-efficient electron emitters into water and other non-vacuum environments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
第一部分: 该研究项目由NSF的固态和材料化学计划支持,重点关注使用固态材料实现光致电子发射到水和其他非真空环境中的新方法。水和其他液体中的电子具有许多不寻常和重要的性质,包括引发非常困难的化学反应的能力。虽然几乎所有其他电子发射材料在水中都不稳定,但金刚石薄膜化学稳定,能够将电子发射到水,空气和其他非真空环境中,但只有在紫外线照射下才能发射。在该项目中,研究人员正在对金刚石薄膜和其他固态材料进行基础研究,目标是提高光致电子发射的效率和稳定性。研究包括调查光致电子发射的基本机制,并探索通过操纵实验室生长的金刚石薄膜的光学特性来提高这一过程效率的新方法。这项工作可能导致新一代高度稳定,多功能和高效的电子发射器,可用于启动高能化学反应,并将在光学探测器等其他技术中有更广泛的用途。该项目包括为学生和博士后学者提供高级培训和专业发展机会,并包括通过为代表性不足的群体的学生提供夏季研究机会,努力增加科学劳动力的多样性。第二部分: 这项研究由NSF的固态和材料化学计划支持,旨在了解控制金刚石和相关宽带隙半导体向水和其他非真空环境发射电子的能力的原子尺度因素。氢终止的金刚石表面是化学稳定的,并表现出负的电子亲和力,从而产生导带电子进入水和其他非真空环境的无势垒发射。然而,跨越金刚石带隙的电子的激发需要波长小于220 nm的深紫外光。本研究探讨了将金刚石与光学活性材料耦合的异质结构的形成、光学性质和光电化学性质,这些光学活性材料可以使用较长波长的光更有效地将电子注入其导带。一种方法是将具有低功函数或等离子体共振的纳米颗粒掺入金刚石膜中。光电化学响应和电子发射特性作为波长和其他参数的函数的详细测量被用来提取电子激发和发射机制的基本见解。探索性工作正在进行使用其他宽带隙材料与高躺导带。该项目支持的研究生和博士后学者获得广泛的指导和专业发展机会。该项目还支持来自代表性不足群体的学生的夏季研究,并为加强科学工作队伍的多样性做出更广泛的努力。最终,这项研究为内部光电发射过程的本质提供了根本性的新见解,并可能导致新的材料和结构,这些材料和结构可以作为稳定的、节能的电子发射体进入水和其他非真空环境。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Hamers其他文献

Synthesis and characterization of alkylsilane ethers with oligo(ethylene oxide) substituents for safe electrolytes in lithium-ion batteries
用于锂离子电池安全电解质的具有低聚环氧乙烷取代基的烷基硅烷醚的合成和表征
  • DOI:
    10.1039/c0jm01596b
  • 发表时间:
    2010-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lingzhi Zhang;Leslie Lyons;Jocelyn Newhouse;Zhengcheng Zhang;Megan Straughan;Zonghai Chen;Khalil Amine;Robert Hamers;Robert West
  • 通讯作者:
    Robert West

Robert Hamers的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Hamers', 18)}}的其他基金

NSF Center for Sustainable Nanotechnology
NSF 可持续纳米技术中心
  • 批准号:
    2001611
  • 财政年份:
    2020
  • 资助金额:
    $ 52万
  • 项目类别:
    Cooperative Agreement
RAISE-TAQS: Quantum-based chemical sensing
RAISE-TAQS:基于量子的化学传感
  • 批准号:
    1839174
  • 财政年份:
    2018
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
Needs and Opportunities for Mid-Scale Instrumentation in Chemistry
化学中中型仪器的需求和机遇
  • 批准号:
    1644338
  • 财政年份:
    2016
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
Center for Sustainable Nanotechnology
可持续纳米技术中心
  • 批准号:
    1503408
  • 财政年份:
    2015
  • 资助金额:
    $ 52万
  • 项目类别:
    Cooperative Agreement
Photoelectron Emission at Diamond-Liquid Interfaces
金刚石-液体界面处的光电子发射
  • 批准号:
    1507432
  • 财政年份:
    2015
  • 资助金额:
    $ 52万
  • 项目类别:
    Continuing Grant
Functional Carbon Nano-skins: Integrating Nanostructured Oxides with Molecular Systems
功能性碳纳米皮:纳米结构氧化物与分子系统的集成
  • 批准号:
    1310293
  • 财政年份:
    2013
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
Photoelectron Emission at Diamond-Liquid Interfaces
金刚石-液体界面处的光电子发射
  • 批准号:
    1207281
  • 财政年份:
    2012
  • 资助金额:
    $ 52万
  • 项目类别:
    Continuing Grant
CCI Phase 1: Center for Sustainable Nanotechnology
CCI 第一阶段:可持续纳米技术中心
  • 批准号:
    1240151
  • 财政年份:
    2012
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
Multifunctional Molecular Interfaces to Metal Oxide Surfaces
金属氧化物表面的多功能分子界面
  • 批准号:
    0911543
  • 财政年份:
    2009
  • 资助金额:
    $ 52万
  • 项目类别:
    Continuing Grant
Electrocatalytically Active Molecule-Nanostructure Hybrid Materials
电催化活性分子-纳米结构杂化材料
  • 批准号:
    0706559
  • 财政年份:
    2008
  • 资助金额:
    $ 52万
  • 项目类别:
    Continuing Grant

相似海外基金

Control of isoelectronic traps in ultra widegap semiconductor and realization of their vacuum UV emission
超宽禁带半导体等电子陷阱的控制及其真空紫外发射的实现
  • 批准号:
    22K04952
  • 财政年份:
    2022
  • 资助金额:
    $ 52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Room temperature high-power terahertz semiconductor laser with high-quality beam shape and stable spectral emission
具有高质量光束形状和稳定光谱发射的室温高功率太赫兹半导体激光器
  • 批准号:
    2149908
  • 财政年份:
    2022
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
Construction of zero emission process for semiconductor plating using ion exchange/chelate fibers
使用离子交换/螯合纤维构建半导体电镀零排放工艺
  • 批准号:
    20K12248
  • 财政年份:
    2020
  • 资助金额:
    $ 52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of Novel Electron Emitter for Photon Enhanced Thermionic Emission Using Thin Film Semiconductor Material
使用薄膜半导体材料开发用于光子增强热电子发射的新型电子发射器
  • 批准号:
    18K04934
  • 财政年份:
    2018
  • 资助金额:
    $ 52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Elucidation of electromagnetic wave emission responses in semiconductor crystals under the coexistence of different kinds of terahertz-range transient phenomena
阐明不同种类太赫兹范围瞬态现象共存下半导体晶体的电磁波发射响应
  • 批准号:
    18K03497
  • 财政年份:
    2018
  • 资助金额:
    $ 52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Semiconductor-based circularly polarized emission by using topological edge states derived from optical Weyl points
利用从光学 Weyl 点导出的拓扑边缘态进行基于半导体的圆偏振发射
  • 批准号:
    18K18857
  • 财政年份:
    2018
  • 资助金额:
    $ 52万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Improvement of Thermionic Emission Performance by Activation of Semiconductor Emitter and Its Application for Photon Enhanced Thermionic Energy Conversion
半导体发射体激活提高热电子发射性能及其在光子增强热电子能量转换中的应用
  • 批准号:
    26420228
  • 财政年份:
    2014
  • 资助金额:
    $ 52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Plasmonic nano-antenna enhanced nonlinear light emission and frequency conversion in dielectric and semiconductor micro-structures (A05)
等离子体纳米天线增强介电和半导体微结构中的非线性光发射和频率转换(A05)
  • 批准号:
    251204243
  • 财政年份:
    2014
  • 资助金额:
    $ 52万
  • 项目类别:
    CRC/Transregios
Development of red-color emission based on nitride semiconductor for white lighing
开发基于氮化物半导体的红色发光白光照明
  • 批准号:
    24560362
  • 财政年份:
    2012
  • 资助金额:
    $ 52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Emission characteristics of the resonance fluorescence of semiconductor quantum dots in microcavities
微腔半导体量子点共振荧光的发射特性
  • 批准号:
    211498118
  • 财政年份:
    2012
  • 资助金额:
    $ 52万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了