Asymptotic growth of symbolic powers, mixed multiplicities, and convex bodies

符号幂、混合多重性和凸体的渐近增长

基本信息

  • 批准号:
    2001645
  • 负责人:
  • 金额:
    $ 13.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-15 至 2022-11-30
  • 项目状态:
    已结题

项目摘要

This project is in commutative algebra which is the area of mathematics that studies properties of polynomial equations in several variables. Various phenomena across science and engineering can be modeled by systems of polynomial equations, which leads to natural interactions with other fields such as applied mathematics, biology, computer science, and mathematical physics. For systems of polynomial equations, one studies its sets of solutions, called varieties, and the corresponding shapes they describe in high-dimensional spaces. As the number of equations and variables grow larger, one useful approach to understand these shapes is to study the algebraic functions defined on them. Using this approach, many properties such as smoothness and degrees of varieties can be translated into algebraic terms. One such strategy is to study properties of varieties by analyzing the asymptotic behavior of sequences of algebraic objects called ideals. This project contributes to this line of research with problems originating from two directions that involve the study of these properties of ideals. The PI will also be involved in mentoring students and in organizing academic events, focusing on benefiting graduate students and underrepresented groups in mathematics.The symbolic powers of an ideal encode important algebraic and geometric information of the ideal and the variety it defines. The PI will investigate the asymptotic behavior of homological invariants of symbolic powers such as, the number of generators, the Castelnuovo-Mumford regularity, and the projective dimension. For the sequence of numbers of generators, the PI intends to investigate if it always has polynomial complexity, building of previous results by the PI and his collaborators. A general result in this direction would have important consequences on the arithmetic rank, Frobenius complexity, and Kodaira dimension of divisors. For the other two sequences, regularities and projective dimensions, the PI will focus on regular rings of positive characteristic. In such rings, a new class of ideals is defined for which it has been previously shown the limit of these sequences exist; this class includes several types of determinantal ideals, as well as the square-free monomial ideals. The PI will investigate the existence of these limits for more general classes of ideals. The relation between multiplicities and convex bodies is an important research topic lying in the interaction of Commutative Algebra, Algebraic Geometry, and Combinatorics. In recent years, this line of research has gained much activity due to the introduction of Newton-Okounkov bodies and mixed multiplicities of filtrations of ideals. The PI and his collaborators intend to find conditions for the non-vanishing of mixed multiplicities of multigraded algebras. The PI will also investigate a notion of mixed multiplicities for filtrations of not necessarily zero dimensional ideals and the relation of these new multiplicities with the mixed volumes of certain Newton-Okounkov bodies.This project is jointly funded by the Division of Mathematical Sciences and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目属于交换代数,交换代数是数学的一个领域,研究多变量多项式方程的性质。科学和工程领域的各种现象都可以用多项式方程系统来建模,这导致了与应用数学、生物学、计算机科学和数学物理等其他领域的自然互动。对于多项式方程的系统,人们研究它的解的集合,称为变种,以及它们在高维空间中描述的相应形状。随着方程和变量的数量越来越多,理解这些形状的一个有用方法是研究在它们上面定义的代数函数。使用这种方法,许多属性,如平滑度和变化度可以转换成代数项。其中一种策略是通过分析称为理想的代数对象序列的渐近行为来研究变量的性质。该项目对这一研究方向做出了贡献,其问题源于两个方向,涉及对理想的这些性质的研究。PI还将参与指导学生和组织学术活动,重点是使研究生和数学领域代表性不足的群体受益。理想的符号能力编码了理想及其定义的多样性的重要代数和几何信息。PI将研究符号幂的同调不变量的渐近行为,如生成器的数量、Castelnuovo-Mumford正则性和射影维数。对于生成数序列,PI打算研究它是否总是具有多项式复杂度,建立PI和他的合作者之前的结果。这个方向的一般结果将对除数的算术秩、Frobenius复杂度和Kodaira维数产生重要影响。对于另外两个序列,规则性序列和射影维数序列,PI将关注具有正特征的正则环。在这样的环中,定义了一类新的理想,对于这些理想,先前已经证明了这些环存在极限;本课程包括几种类型的行列式理想,以及无平方单项式理想。PI将对更一般的理想类别研究这些极限的存在性。复数与凸体的关系是交换代数、代数几何和组合学相互作用中的一个重要研究课题。近年来,由于引入了牛顿-奥肯科夫体和理想过滤的混合多样性,这一研究领域获得了很大的活跃度。PI和他的合作者打算找到多重代数的混合多重不消失的条件。PI还将研究不一定是零维理想过滤的混合多重度的概念,以及这些新多重度与某些牛顿-奥库科夫体的混合体积的关系。该项目由数学科学部和促进竞争性研究的既定计划(EPSCoR)共同资助。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Frobenius methods in combinatorics
  • DOI:
    10.1007/s40863-022-00332-w
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alessandro De Stefani;Jonathan Montaño;Luis N'unez-Betancourt
  • 通讯作者:
    Alessandro De Stefani;Jonathan Montaño;Luis N'unez-Betancourt
When are multidegrees positive?
  • DOI:
    10.1016/j.aim.2020.107382
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    F. Castillo;Yairon Cid‐Ruiz;Binglin Li;Jonathan Montaño;Naizhen Zhang
  • 通讯作者:
    F. Castillo;Yairon Cid‐Ruiz;Binglin Li;Jonathan Montaño;Naizhen Zhang
Exterior powers and Tor-persistence
外部权力和 Tor 持久性
  • DOI:
    10.1016/j.jpaa.2021.106890
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Lyle, Justin;Montaño, Jonathan;Sather-Wagstaff, Keri
  • 通讯作者:
    Sather-Wagstaff, Keri
Mixed multiplicities of graded families of ideals
理想分级族的混合多重性
  • DOI:
    10.1016/j.jalgebra.2021.10.010
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Cid-Ruiz, Yairon;Montaño, Jonathan
  • 通讯作者:
    Montaño, Jonathan
Convex bodies and graded families of monomial ideals
单项式理想的凸体和分级族
  • DOI:
    10.4171/rmi/1373
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cid-Ruiz, Yairon;Montaño, Jonathan
  • 通讯作者:
    Montaño, Jonathan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jonathan Montano其他文献

Jonathan Montano的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jonathan Montano', 18)}}的其他基金

Asymptotic growth of symbolic powers, mixed multiplicities, and convex bodies
符号幂、混合多重性和凸体的渐近增长
  • 批准号:
    2303605
  • 财政年份:
    2022
  • 资助金额:
    $ 13.98万
  • 项目类别:
    Standard Grant
Pan-American School on Commutative Algebra (PASCA 2022)
泛美交换代数学校 (PASCA 2022)
  • 批准号:
    2220824
  • 财政年份:
    2022
  • 资助金额:
    $ 13.98万
  • 项目类别:
    Standard Grant

相似国自然基金

基于FP-Growth关联分析算法的重症患者抗菌药物精准决策模型的构建和实证研究
  • 批准号:
    2024Y9049
  • 批准年份:
    2024
  • 资助金额:
    100.0 万元
  • 项目类别:
    省市级项目
含Re、Ru先进镍基单晶高温合金中TCP相成核—生长机理的原位动态研究
  • 批准号:
    52301178
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于 Klotho 调控 FGF23/SGK1/NF-κB信号通路研究糖尿病肾病血管钙化机制及肾元颗粒干预作用
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
非经典TGF-beta信号通路调控小肠干细胞稳态的作用及机制研究
  • 批准号:
    32000538
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
IQGAP2蛋白在介导R-spondin影响小肠干细胞稳态的作用
  • 批准号:
    31900550
  • 批准年份:
    2019
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
细胞膜受体调控mTORC2活化的新机制研究
  • 批准号:
    31970717
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
生长激素信号降低与肥胖发生关系的分子机制研究
  • 批准号:
    81170814
  • 批准年份:
    2011
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
CD4+CD25+调节性T细胞对肿瘤干细胞的影响及其调控机制研究
  • 批准号:
    81171983
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
Fgf19对耳蜗毛细胞发育调控机制的研究
  • 批准号:
    31140047
  • 批准年份:
    2011
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Growth and Exisential Risk
增长和存在风险
  • 批准号:
    2743836
  • 财政年份:
    2025
  • 资助金额:
    $ 13.98万
  • 项目类别:
    Studentship
CAREER: Nanomechanics of Bacterial Mucoadhesion and Growth on Healthy and Diseased Human Gut Mucus
职业:健康和患病人类肠道粘液上细菌粘膜粘附和生长的纳米力学
  • 批准号:
    2338518
  • 财政年份:
    2024
  • 资助金额:
    $ 13.98万
  • 项目类别:
    Standard Grant
EMBRACE-AGS-Growth: Diagnosing Kinematic Processes Responsible for Precipitation Distributions in Tropical Cyclones
EMBRACE-AGS-Growth:诊断热带气旋降水分布的运动过程
  • 批准号:
    2409475
  • 财政年份:
    2024
  • 资助金额:
    $ 13.98万
  • 项目类别:
    Standard Grant
Doctoral Dissertation Research: Renewable Energy Transition and Economic Growth
博士论文研究:可再生能源转型与经济增长
  • 批准号:
    2342813
  • 财政年份:
    2024
  • 资助金额:
    $ 13.98万
  • 项目类别:
    Standard Grant
Collaborative Research: The Interplay of Water Condensation and Fungal Growth on Biological Surfaces
合作研究:水凝结与生物表面真菌生长的相互作用
  • 批准号:
    2401507
  • 财政年份:
    2024
  • 资助金额:
    $ 13.98万
  • 项目类别:
    Standard Grant
CAREER: Emergence of in-liquid structures in metallic alloys by nucleation and growth
职业:通过成核和生长在金属合金中出现液态结构
  • 批准号:
    2333630
  • 财政年份:
    2024
  • 资助金额:
    $ 13.98万
  • 项目类别:
    Continuing Grant
CAREER: Elucidating the Correlative Interfacial Solvation, Nucleation, and Growth Processes in Battery Electrolytes
职业:阐明电池电解质中相关的界面溶剂化、成核和生长过程
  • 批准号:
    2339175
  • 财政年份:
    2024
  • 资助金额:
    $ 13.98万
  • 项目类别:
    Continuing Grant
CAREER: Understanding how hierarchical organization of growth plate stem cells controls skeletal growth
职业:了解生长板干细胞的分层组织如何控制骨骼生长
  • 批准号:
    2339761
  • 财政年份:
    2024
  • 资助金额:
    $ 13.98万
  • 项目类别:
    Continuing Grant
FDI, Technology Spillovers and Economic Growth
外国直接投资、技术溢出和经济增长
  • 批准号:
    24K04861
  • 财政年份:
    2024
  • 资助金额:
    $ 13.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Pushing the envelope: atomic force microscopy imaging of the bacterial outer membrane during growth and division
挑战极限:生长和分裂过程中细菌外膜的原子力显微镜成像
  • 批准号:
    BB/X007669/1
  • 财政年份:
    2024
  • 资助金额:
    $ 13.98万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了