Collaborative Research: Atomically thin topological insulators via confinement heteroepitaxy
合作研究:通过限制异质外延制备原子薄拓扑绝缘体
基本信息
- 批准号:2002651
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Nontechnical DescriptionThe dawn of quantum computing is rapidly developing with the potential to completely transform the field of computation. However, current quantum computers based on superconductors, ions, or atoms are prone to error due to imperfections. The solution to this grand challenge is to use new, engineered materials which are inherently immune to these imperfections. However, key questions remain regarding how to make a material that integrates the demanding properties needed to achieve superior performance in a technologically relevant manner. The principal investigators have created a new method to make ultra-thin metals, and this project focuses on understanding the microscopic properties of such metals, specifically bismuth and lead. The investigators will evaluate the impact of thinning these materials down to just a few atoms thick to explore how their properties change when they are manipulated at the atomic-scale. Beyond the scientific impact, this collaborative project will provide interdisciplinary research training for underrepresented graduate students, to broaden participation in science and engineering programs. The project will also develop a unique industry/university consortium to impart the importance of safety in industrial and research settings. This will not only better train future scientists for post-graduate careers in industry, but will also improve safety preparedness in academia.Technical DescriptionThe creation of a quantum spin Hall insulator (QSHI) by reducing the dimensionality of a topological insulator from 3D to 2D could provide a unique, robust route to achieving topological superconductivity. This project will investigate the atomic-scale physical, chemical and electronic properties of 2D bismuth (Bi) and lead (Pb). Lead and bismuth exhibit very strong spin-orbit interactions, and exceptionally robust and easily accessible topological insulator properties that may enable the design of groundbreaking electronic devices with dissipationless spin currents, and the realization of Majorana bound states. Furthermore, these elements exhibit unconventional superconductivity, and could be combined with ferromagnetic materials, suggesting the possibility of creating a Pb-based topological superconductor. The investigators enable the study by synthesizing atomically thin, two-dimensional forms of these materials prepared via confinement heteroepitaxy (CHet) – a novel intercalation process that stabilizes 2D forms of 3D materials developed by the PIs. The SiC/graphene interface passivation is investigated before, during and after synthesis to understand how interface reconstruction can enable in-situ removal of the graphene cap for direct characterization access to the 2D-Bi and Pb. Additionally, removing the graphene cap enables direct functionalization of the 2D metal to explore how modifying the surfaces of 2D-Bi and Pb changes their underlying physical properties, including bonding and electronic character. Finally, the project is developing a mechanistic understanding of how the structure and interfacial interactions with SiC and graphene impact electronic structure of 2D-Bi and 2D-Pb and elucidate how they differ from thin films deposited by traditional methods.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子计算的曙光正在迅速发展,有可能彻底改变计算领域。然而,目前基于超导体、离子或原子的量子计算机由于不完善而容易出错。解决这一巨大挑战的方法是使用新的工程材料,这些材料本身就不受这些缺陷的影响。然而,关键的问题仍然是如何制造一种材料,以技术相关的方式集成所需的苛刻性能,以实现卓越的性能。主要研究人员创造了一种制造超薄金属的新方法,该项目的重点是了解这些金属的微观性质,特别是铋和铅。研究人员将评估将这些材料减薄到只有几个原子厚的影响,以探索当它们在原子尺度上被操纵时,它们的性质是如何变化的。除了科学影响之外,该合作项目还将为代表性不足的研究生提供跨学科研究培训,以扩大科学和工程项目的参与。该项目还将建立一个独特的工业/大学联盟,以传授工业和研究环境中安全的重要性。这不仅将更好地为工业界的研究生职业培养未来的科学家,而且还将改善学术界的安全准备。技术描述通过将拓扑绝缘体的维度从3D降至2D来创建量子自旋霍尔绝缘体(QSHI),可以为实现拓扑超导性提供独特,稳健的途径。该项目将研究二维铋(Bi)和铅(Pb)的原子尺度物理、化学和电子性质。铅和铋表现出非常强的自旋轨道相互作用,以及异常坚固和易于获取的拓扑绝缘体特性,这可能使具有无耗散自旋电流的突破性电子器件的设计成为可能,并实现马约拉纳束缚态。此外,这些元素表现出非常规的超导性,并且可以与铁磁性材料结合,这表明创造基于铅的拓扑超导体的可能性。研究人员通过合成原子薄的二维形式的这些材料,通过约束异质外延(CHet)制备,这是一种新的插层工艺,可以稳定pi开发的2D形式的3D材料。在合成之前、过程中和之后研究了SiC/石墨烯界面钝化,以了解界面重建如何能够原位去除石墨烯帽,从而直接表征2D-Bi和Pb。此外,去除石墨烯帽可以实现2D金属的直接功能化,以探索如何修改2D- bi和Pb的表面改变其潜在的物理性质,包括键合和电子特性。最后,该项目正在对与SiC和石墨烯的结构和界面相互作用如何影响2D-Bi和2D-Pb的电子结构进行机理理解,并阐明它们与传统方法沉积的薄膜有何不同。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Light–Matter Interaction in Quantum Confined 2D Polar Metals
- DOI:10.1002/adfm.202005977
- 发表时间:2020-10
- 期刊:
- 影响因子:19
- 作者:Katharina Nisi;S. Subramanian;Wen He;K. Ulman;Hesham M El-Sherif;F. Sigger;Margaux Lassaunière;Maxwell T. Wetherington;Natalie C Briggs;J. Gray;A. Holleitner;N. Bassim;S. Y. Quek;J. Robinson;U. Wurstbauer
- 通讯作者:Katharina Nisi;S. Subramanian;Wen He;K. Ulman;Hesham M El-Sherif;F. Sigger;Margaux Lassaunière;Maxwell T. Wetherington;Natalie C Briggs;J. Gray;A. Holleitner;N. Bassim;S. Y. Quek;J. Robinson;U. Wurstbauer
Tunable 2D Group‐III Metal Alloys
- DOI:10.1002/adma.202104265
- 发表时间:2021-09
- 期刊:
- 影响因子:29.4
- 作者:S. Rajabpour;Alexander Vera;Wen He;Boris Katz;R. Koch;Margaux Lassaunière;Xuegang Chen;Cequn Li;Katharina Nisi;Hesham M El-Sherif;Maxwell T. Wetherington;C. Dong;A. Bostwick;C. Jozwiak;A. V. van Duin;N. Bassim;Jun Zhu;Gwo-Ching Wang;U. Wurstbauer;E. Rotenberg;V. Crespi;S. Y. Quek;J. Robinson
- 通讯作者:S. Rajabpour;Alexander Vera;Wen He;Boris Katz;R. Koch;Margaux Lassaunière;Xuegang Chen;Cequn Li;Katharina Nisi;Hesham M El-Sherif;Maxwell T. Wetherington;C. Dong;A. Bostwick;C. Jozwiak;A. V. van Duin;N. Bassim;Jun Zhu;Gwo-Ching Wang;U. Wurstbauer;E. Rotenberg;V. Crespi;S. Y. Quek;J. Robinson
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joshua Robinson其他文献
Macular Development in Aggressive Posterior Retinopathy of Prematurity
早产儿侵袭性后部视网膜病变的黄斑发育
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
H. Pandya;L. Faia;Joshua Robinson;K. Drenser - 通讯作者:
K. Drenser
Bilateral acute retinal necrosis in a patient with multiple sclerosis on natalizumab
- DOI:
10.1186/s12348-016-0095-y - 发表时间:
2016-07-20 - 期刊:
- 影响因子:2.300
- 作者:
Arjun B. Sood;Gokul Kumar;Joshua Robinson - 通讯作者:
Joshua Robinson
Clinical Correlation between Acute Exudative Polymorphous Paraneoplastic Vitelliform Maculopathy and Metastatic Melanoma Disease Activity: A 48-month Longitudinal Case Report
急性渗出性多形性副肿瘤性黄斑病与转移性黑色素瘤疾病活动之间的临床相关性:48 个月的纵向病例报告
- DOI:
10.1080/09273948.2020.1813782 - 发表时间:
2020 - 期刊:
- 影响因子:3.3
- 作者:
C. Mueller;Sara L. Hojjatie;D. Lawson;Nieraj Jain;Joshua Robinson;Mohammad K. Khan;M. Yushak;Ghazala D. O’Keefe - 通讯作者:
Ghazala D. O’Keefe
CMR 3-100 - Predictors of Sudden Cardiac Arrest in Fontan Patients
CMR 3-100 - 法洛四联症患者心脏骤停的预测因素
- DOI:
10.1016/j.jocmr.2024.100164 - 发表时间:
2024-03-01 - 期刊:
- 影响因子:6.100
- 作者:
Natasha Wolfe;Mary Schiff;Laura Olivieri;Adam Christopher;Mark Fogel;Timothy Slesnick;Rajesh Krishnamurthy;Vivek Muthurangu;Adam Dorfman;Christopher Lam;Justin Weigand;Joshua Robinson;Rahul Rathod;Tarek Alsaied;FORCE ELT and Investigators - 通讯作者:
FORCE ELT and Investigators
Hemodynamic changes in children associated with dobutamine stress CMR for anomalous aortic origin of the coronary arteries
多巴酚丁胺负荷 CMR 检查冠状动脉异常起源的儿童血流动力学变化
- DOI:
10.1016/j.jocmr.2024.101166 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:6.100
- 作者:
Karen Carvalho;Simon Lee;Nazia Husain;Joshua Robinson;Cynthia Rigsby;Kristy O'Connor;Amanda Eichstaedt;Andrew de Freitas;Eric Vu;Scott Stenquist - 通讯作者:
Scott Stenquist
Joshua Robinson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joshua Robinson', 18)}}的其他基金
Collaborative Research: Single Photon Emission in Lanthanide-Doped 2D Materials & Devices
合作研究:稀土掺杂二维材料中的单光子发射
- 批准号:
2202280 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
2019 US-EU Workshop on 2D Materials. To Be Held In State College PA, May 9-10, 2019.
2019 年美国-欧盟二维材料研讨会。
- 批准号:
1933334 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Atomic Scale Design of van der Waals Heterostructure Nanoribbons
职业:范德华异质结构纳米带的原子尺度设计
- 批准号:
1453924 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
EFRI 2-DARE: Ultra-Low Power, Collective-State Device Technology Based on Electron Correlation in Two-Dimensional Atomic Layers
EFRI 2-DARE:基于二维原子层电子关联的超低功耗集体态器件技术
- 批准号:
1433307 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
EAGER/Collaborative Research: CRYO: Engineering Atomically Thin Magnetic Materials for Efficient Solid-State Cooling at Cryogenic Temperatures
EAGER/合作研究:CRYO:工程原子薄磁性材料,可在低温下进行高效固态冷却
- 批准号:
2233592 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Atomically precise catalyst design for selective bond activation
合作研究:DMREF:用于选择性键激活的原子精确催化剂设计
- 批准号:
2323701 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: CRYO: Engineering Atomically Thin Magnetic Materials for Efficient Solid-State Cooling at Cryogenic Temperatures
EAGER/合作研究:CRYO:工程原子薄磁性材料,可在低温下进行高效固态冷却
- 批准号:
2233375 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Atomically precise catalyst design for selective bond activation
合作研究:DMREF:用于选择性键激活的原子精确催化剂设计
- 批准号:
2323700 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Atomically precise catalyst design for selective bond activation
合作研究:DMREF:用于选择性键激活的原子精确催化剂设计
- 批准号:
2323699 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Engineering Atomically Dispersed Metal-Site Air Cathodes via Electrospinning at Multi-Scales for Low-Temperature Fuel Cells
合作研究:通过多尺度静电纺丝设计原子分散金属位点空气阴极用于低温燃料电池
- 批准号:
2223447 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Engineering Atomically Dispersed Metal-Site Air Cathodes via Electrospinning at Multi-Scales for Low-Temperature Fuel Cells
合作研究:通过多尺度静电纺丝设计原子分散金属位点空气阴极用于低温燃料电池
- 批准号:
2223467 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Promoting Lithium Sulfides Redox Cycle via Atomically Dispersed Active Sites for Batteries
合作研究:通过电池的原子分散活性位点促进硫化锂氧化还原循环
- 批准号:
2129983 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: Promoting Lithium Sulfides Redox Cycle via Atomically Dispersed Active Sites for Batteries
合作研究:通过电池的原子分散活性位点促进硫化锂氧化还原循环
- 批准号:
2129982 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAS: Collaborative Research: Solar CO2 Reduction by Atomically Dispersed Metal Sites on Few-Layer Carbon Nitride
CAS:合作研究:通过少层氮化碳上的原子分散金属位点减少太阳能二氧化碳
- 批准号:
2102198 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant