EFRI 2-DARE: Ultra-Low Power, Collective-State Device Technology Based on Electron Correlation in Two-Dimensional Atomic Layers

EFRI 2-DARE:基于二维原子层电子关联的超低功耗集体态器件技术

基本信息

  • 批准号:
    1433307
  • 负责人:
  • 金额:
    $ 200万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2020-09-30
  • 项目状态:
    已结题

项目摘要

Abstract Title: Ultra-Low Power, Collective-State Device Technology Based on Electron Correlation in Two-Dimensional Atomic Layers.Non-Technical: Today's transistors cannot meet the demands of ultra-low power, high speed operation required in future digital technologies. Therefore, to enable a continuation of the relentless down-scaling, a transformation of the device architecture must begin with materials that exhibit fundamentally different functionalities beyond the single electron excitation in traditional semiconductors. Strongly correlated 2D materials, where the electronic phase transformation and collective excitation that determine the electronic response, and devices based on these materials (Landau switch), have the potential to become the successor of the conventional silicon technology. The logic operation is based on completely different mechanisms and the successful realization of the Landau switch concept will extend the road map of low power digital and analog circuits with large societal impact affecting both governmental and commercial sector. Our academic-industry partnerships will provide a close link to large-scale manufacturers of advanced materials and devices, thus ensuring a critical evaluation of manufacturability and large scale production while fundamental science and engineering is performed throughout the proposed research efforts. We will support four graduate students and one post-doctoral fellow, who will take full advantage of the interdisciplinary, multi-institutional, government, and industrial R&D environment provided by this collaboration. Mandatory internships at partnering institutions will enhance their educational experience, and each will participate in outreach programs designed to enhance STEM education. Technical: This research will develop a "post silicon" transistor that operates on the principle of strong electron correlation and the associated phase transitions in two-dimensional materials. To achieve this goal we will: 1) develop theory to predict the nonlinear electronic response in correlated 2D materials, 2) introduce novel synthesis routes and doping strategies, 3) utilize advanced nanoscale characterization techniques 4) develop unique device concepts enabling steep sub-thermal switching characteristics beyond the single particle excitation limit, explore advanced device fabrication and characterization, and 5) benchmark device performance and reliability against complementary metal oxide semiconductor (CMOS) technology. The proposed strategies build upon our successful development of large area synthesis, integration, and characterization of two-dimensional layered materials, theory, and characterization of materials and devices exhibiting collective electron phenomena. The themes that form the core research and outreach program are: 1) Demonstrating the first electric-field induced, reversible, phase transition in a three terminal transistor based on 1T-TaS2-xSex. [EFRI Thrust Area 1]; 2) Understanding the fundamental role of defects, dopants, functionalization, and heterogeneous integration on the electronic properties of 2D correlated systems. [EFRI Thrust Area 1]; 3) Optimizing synthesis techniques for scalable nano-manufacturing of high quality 2D layered materials. [EFRI Thrust Area 2]; 4) Developing advanced theoretical models to predict electron-electron, electron-lattice and electron-impurity interaction and its impact on electronic structure, transport phenomena and ultimately device characteristics [EFRI Thrust Area 3]; 5) Educating the next generation through a series of novel education programs focused on broadening participation and providing unique research opportunities to underrepresented minorities via collaborations with international faculty, government laboratories, and industrial partners. [Broadening Participation]
摘要标题:基于二维原子层中电子关联的超低功耗集态器件技术。非技术:今天的晶体管不能满足未来数字技术对超低功耗、高速操作的要求。因此,为了能够持续不断地缩小规模,设备架构的转变必须从表现出传统半导体中单电子激发之外的根本不同功能的材料开始。强相关的2D材料,其中决定电子响应的电子相变和集体激发,以及基于这些材料的器件(朗道开关),有可能成为传统硅技术的继任者。逻辑操作基于完全不同的机制,朗道开关概念的成功实现将扩大低功耗数字和模拟电路的路线图,对政府和商业部门都有重大的社会影响。我们的学术和产业合作伙伴关系将为先进材料和设备的大型制造商提供密切的联系,从而确保在整个拟议的研究工作中进行基础科学和工程研究的同时,对可制造性和大规模生产进行关键评估。我们将支持4名研究生和1名博士后,他们将充分利用此次合作提供的跨学科、多机构、政府和行业研发环境。在合作机构的强制性实习将增强他们的教育经验,每个人都将参加旨在加强STEM教育的外联计划。技术:这项研究将开发一种“后硅”晶体管,其工作原理是二维材料中的强电子关联和相关相变。为了实现这一目标,我们将:1)开发理论以预测相关2D材料中的非线性电子响应;2)推出新颖的合成路线和掺杂策略,3)利用先进的纳米级表征技术4)开发独特的器件概念,使陡峭的亚热开关特性超过单粒子激发极限,探索先进的器件制造和表征,以及5)对照互补金属氧化物半导体(CMOS)技术对器件性能和可靠性进行基准测试。所提出的战略建立在我们成功地开发了大面积合成、集成和表征二维层状材料、理论以及展示集体电子现象的材料和器件的表征的基础上。形成核心研究和推广计划的主题是:1)展示基于1T-TaS2-xSex的三端子晶体管中的第一个电场诱导的可逆相变。[EFRI推力区1];2)了解缺陷、掺杂剂、官能化和异质集成对2D相关系统的电子性质的基本作用。[EFRI推力区域1];3)优化合成技术,以实现高质量2D层状材料的可伸缩纳米制造。[EFRI推进区2];4)开发先进的理论模型,以预测电子-电子、电子-晶格和电子-杂质相互作用及其对电子结构、传输现象和最终器件特性的影响[EFRI推进区3];5)通过与国际教师、政府实验室和产业合作伙伴的合作,通过一系列新的教育计划教育下一代,重点是扩大参与并为代表性不足的少数群体提供独特的研究机会。[扩大参与度]

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joshua Robinson其他文献

Macular Development in Aggressive Posterior Retinopathy of Prematurity
早产儿侵袭性后部视网膜病变的黄斑发育
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H. Pandya;L. Faia;Joshua Robinson;K. Drenser
  • 通讯作者:
    K. Drenser
Bilateral acute retinal necrosis in a patient with multiple sclerosis on natalizumab
Clinical Correlation between Acute Exudative Polymorphous Paraneoplastic Vitelliform Maculopathy and Metastatic Melanoma Disease Activity: A 48-month Longitudinal Case Report
急性渗出性多形性副肿瘤性黄斑病与转移性黑色素瘤疾病活动之间的临床相关性:48 个月的纵向病例报告
  • DOI:
    10.1080/09273948.2020.1813782
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    C. Mueller;Sara L. Hojjatie;D. Lawson;Nieraj Jain;Joshua Robinson;Mohammad K. Khan;M. Yushak;Ghazala D. O’Keefe
  • 通讯作者:
    Ghazala D. O’Keefe
Hemodynamic changes in children associated with dobutamine stress CMR for anomalous aortic origin of the coronary arteries
多巴酚丁胺负荷 CMR 检查冠状动脉异常起源的儿童血流动力学变化
  • DOI:
    10.1016/j.jocmr.2024.101166
  • 发表时间:
    2025-03-01
  • 期刊:
  • 影响因子:
    6.100
  • 作者:
    Karen Carvalho;Simon Lee;Nazia Husain;Joshua Robinson;Cynthia Rigsby;Kristy O'Connor;Amanda Eichstaedt;Andrew de Freitas;Eric Vu;Scott Stenquist
  • 通讯作者:
    Scott Stenquist
CMR 3-100 - Predictors of Sudden Cardiac Arrest in Fontan Patients
CMR 3-100 - 法洛四联症患者心脏骤停的预测因素
  • DOI:
    10.1016/j.jocmr.2024.100164
  • 发表时间:
    2024-03-01
  • 期刊:
  • 影响因子:
    6.100
  • 作者:
    Natasha Wolfe;Mary Schiff;Laura Olivieri;Adam Christopher;Mark Fogel;Timothy Slesnick;Rajesh Krishnamurthy;Vivek Muthurangu;Adam Dorfman;Christopher Lam;Justin Weigand;Joshua Robinson;Rahul Rathod;Tarek Alsaied;FORCE ELT and Investigators
  • 通讯作者:
    FORCE ELT and Investigators

Joshua Robinson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joshua Robinson', 18)}}的其他基金

Collaborative Research: Single Photon Emission in Lanthanide-Doped 2D Materials & Devices
合作研究:稀土掺杂二维材料中的单光子发射
  • 批准号:
    2202280
  • 财政年份:
    2022
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
Collaborative Research: Atomically thin topological insulators via confinement heteroepitaxy
合作研究:通过限制异质外延制备原子薄拓扑绝缘体
  • 批准号:
    2002651
  • 财政年份:
    2020
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
2019 US-EU Workshop on 2D Materials. To Be Held In State College PA, May 9-10, 2019.
2019 年美国-欧盟二维材料研讨会。
  • 批准号:
    1933334
  • 财政年份:
    2019
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
CAREER: Atomic Scale Design of van der Waals Heterostructure Nanoribbons
职业:范德华异质结构纳米带的原子尺度设计
  • 批准号:
    1453924
  • 财政年份:
    2015
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant

相似海外基金

Research Hub for Decarbonised Adaptable and Resilient Transport Infrastructures (DARe)
脱碳、适应性和弹性交通基础设施研究中心 (DARe)
  • 批准号:
    EP/Y024257/1
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Research Grant
DARE-FX: Delivering a federated network of TREs to enable safe analytics
DARE-FX:提供 TRE 联合网络以实现安全分析
  • 批准号:
    MC_PC_23007
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Intramural
RI: Small: DaRE: Detection and Recognition of Euphemisms
RI:小:DaRE:委婉语的检测和识别
  • 批准号:
    2226006
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
CAREER: We Dare Defend Our Rights: The Political Use of Law in the Enforcement of Voting Rights
职业:我们敢于捍卫我们的权利:法律在执行投票权中的政治运用
  • 批准号:
    2231729
  • 财政年份:
    2022
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant
Collaborative Research: DARE: A Personalized Assistive Robotic System that assesses Cognitive Fatigue in Persons with Paralysis
合作研究:DARE:一种评估瘫痪者认知疲劳的个性化辅助机器人系统
  • 批准号:
    2226164
  • 财政年份:
    2022
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
CAREER: We Dare Defend Our Rights: The Political Use of Law in the Enforcement of Voting Rights
职业:我们敢于捍卫我们的权利:法律在执行投票权中的政治运用
  • 批准号:
    2143381
  • 财政年份:
    2022
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant
DARE Conference: Transformative Opportunities for Modeling in Neurorehabilitation; Los Angeles, California; March 3-4, 2023
DARE 会议:神经康复建模的变革机会;
  • 批准号:
    2240277
  • 财政年份:
    2022
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
Collaborative Research: DARE: A Personalized Assistive Robotic System that assesses Cognitive Fatigue in Persons with Paralysis
合作研究:DARE:一种评估瘫痪者认知疲劳的个性化辅助机器人系统
  • 批准号:
    2226165
  • 财政年份:
    2022
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
DARE: Creating the blueprint for a federated network of next generation, cross-council Trusted Research Environments.
DARE:为下一代跨理事会可信研究环境的联合网络创建蓝图。
  • 批准号:
    MC_PC_21028
  • 财政年份:
    2022
  • 资助金额:
    $ 200万
  • 项目类别:
    Intramural
DARE
  • 批准号:
    600569
  • 财政年份:
    2022
  • 资助金额:
    $ 200万
  • 项目类别:
    EU-Funded
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了