Derived Categories, Hodge Theory, and Birational Geometry

派生范畴、霍奇理论和双有理几何

基本信息

  • 批准号:
    2002709
  • 负责人:
  • 金额:
    $ 11.36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2021-01-31
  • 项目状态:
    已结题

项目摘要

Algebraic geometry is the study of the geometric objects -- called algebraic varieties -- defined by systems of polynomial equations. A fundamental problem is to classify algebraic varieties, i.e. to determine when one can be transformed into another using algebraic functions. The main theme of this project is to study the classification problem using certain algebraic invariants (derived categories and Hodge structures), which can be thought of as sophisticated "linear approximations" to algebraic varieties. These invariants have connections to many fields, ranging from number theory to symplectic geometry and high energy physics. The project has three related parts. The first is to use Bridgeland stability conditions to prove results about the geometry and period mappings of Fano varieties; this relies on a newly developed notion of stability conditions in families, and the existence of noncommutative K3 surfaces in the derived categories of certain Fano varieties. The second part is to construct more examples of noncommutative K3 surfaces, and to further develop the theory of homological projective geometry (which gives a powerful tool for studying noncommutative varieties in general). The third part is to study geometric problems suggested by the first two parts, concerning the rationality of algebraic varieties and the construction of holomorphic symplectic varieties.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
代数几何是研究由多项式方程组定义的几何对象--代数簇。一个基本问题是分类代数簇,即确定何时可以使用代数函数将一个代数簇变换为另一个代数簇。该项目的主题是研究使用某些代数不变量(导出类别和Hodge结构)的分类问题,这些代数不变量可以被认为是代数簇的复杂“线性近似”。这些不变量与许多领域都有联系,从数论到辛几何和高能物理。该项目有三个相关部分。首先是使用Bridgeland稳定性条件来证明Fano品种的几何和周期映射的结果;这依赖于一个新发展的概念的稳定性条件的家庭,和存在的非交换K3表面的衍生类别的某些Fano品种。第二部分是构造更多的非交换K3曲面的例子,进一步发展同调射影几何理论(它为研究一般的非交换簇提供了一个强有力的工具)。第三部分是研究前两部分提出的几何问题,涉及代数簇的合理性和全纯辛簇的构造。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Stability conditions in families
  • DOI:
    10.1007/s10240-021-00124-6
  • 发表时间:
    2019-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Arend Bayer;Mart'i Lahoz;Emanuele Macrì;H. Nuer;Alexander Perry;P. Stellari
  • 通讯作者:
    Arend Bayer;Mart'i Lahoz;Emanuele Macrì;H. Nuer;Alexander Perry;P. Stellari
The integral Hodge conjecture for two-dimensional Calabi–Yau categories
  • DOI:
    10.1112/s0010437x22007266
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Alexander Perry
  • 通讯作者:
    Alexander Perry
Homological projective duality for quadrics
二次曲面的同调射影对偶性
  • DOI:
    10.1090/jag/767
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Kuznetsov, Alexander;Perry, Alexander
  • 通讯作者:
    Perry, Alexander
Categorical joins
分类连接
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Perry其他文献

Moduli spaces of stable objects in Enriques categories
Enriques 范畴中稳定对象的模空间
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexander Perry;L. Pertusi;Xiaolei Zhao
  • 通讯作者:
    Xiaolei Zhao
Derived categories of cyclic covers and their branch divisors
循环覆盖的派生类别及其分支因子
  • DOI:
    10.1007/s00029-016-0243-0
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Kuznetsov;Alexander Perry
  • 通讯作者:
    Alexander Perry
Special surfaces in special cubic fourfolds
特殊立方四重的特殊表面
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Emanuele Macrì;Arend Bayer;A. Bertram;Alexander Perry
  • 通讯作者:
    Alexander Perry
Intersections of two Grassmannians in ℙ9
ℙ9 中两个格拉斯曼函数的交集
Stability conditions on crepant resolutions of quotients of product varieties
产品品种商的绉纹解析的稳定性条件
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexander Perry;Saket Shah
  • 通讯作者:
    Saket Shah

Alexander Perry的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Perry', 18)}}的其他基金

CAREER: Geometry of Derived Categories
职业:派生类别的几何
  • 批准号:
    2143271
  • 财政年份:
    2022
  • 资助金额:
    $ 11.36万
  • 项目类别:
    Continuing Grant
Derived Categories, Hodge Theory, and Birational Geometry
派生范畴、霍奇理论和双有理几何
  • 批准号:
    2112747
  • 财政年份:
    2021
  • 资助金额:
    $ 11.36万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Derived Categories, Moduli Spaces, and Classical Algebraic Geometry
FRG:协作研究:派生范畴、模空间和经典代数几何
  • 批准号:
    2052750
  • 财政年份:
    2021
  • 资助金额:
    $ 11.36万
  • 项目类别:
    Continuing Grant
Derived Categories, Hodge Theory, and Birational Geometry
派生范畴、霍奇理论和双有理几何
  • 批准号:
    1902060
  • 财政年份:
    2019
  • 资助金额:
    $ 11.36万
  • 项目类别:
    Continuing Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    1606460
  • 财政年份:
    2016
  • 资助金额:
    $ 11.36万
  • 项目类别:
    Fellowship Award

相似海外基金

Quantum Groups, W-algebras, and Brauer-Kauffmann Categories
量子群、W 代数和布劳尔-考夫曼范畴
  • 批准号:
    2401351
  • 财政年份:
    2024
  • 资助金额:
    $ 11.36万
  • 项目类别:
    Standard Grant
The geometry of braids and triangulated categories
辫子的几何形状和三角类别
  • 批准号:
    DE240100447
  • 财政年份:
    2024
  • 资助金额:
    $ 11.36万
  • 项目类别:
    Discovery Early Career Researcher Award
Towards Directed Model Categories
走向有向模型类别
  • 批准号:
    EP/Y033418/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.36万
  • 项目类别:
    Research Grant
Constructing and Classifying Pre-Tannakian Categories
前坦纳克阶范畴的构建和分类
  • 批准号:
    2401515
  • 财政年份:
    2024
  • 资助金额:
    $ 11.36万
  • 项目类别:
    Standard Grant
Representation Theory and Geometry in Monoidal Categories
幺半群范畴中的表示论和几何
  • 批准号:
    2401184
  • 财政年份:
    2024
  • 资助金额:
    $ 11.36万
  • 项目类别:
    Continuing Grant
Deformation of singularities through Hodge theory and derived categories
通过霍奇理论和派生范畴进行奇点变形
  • 批准号:
    DP240101934
  • 财政年份:
    2024
  • 资助金额:
    $ 11.36万
  • 项目类别:
    Discovery Projects
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
  • 批准号:
    2341428
  • 财政年份:
    2024
  • 资助金额:
    $ 11.36万
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: MPS-Ascend: Understanding Fukaya categories through Homological Mirror Symmetry
博士后奖学金:MPS-Ascend:通过同调镜像对称理解深谷范畴
  • 批准号:
    2316538
  • 财政年份:
    2023
  • 资助金额:
    $ 11.36万
  • 项目类别:
    Fellowship Award
Collaborative Research: Derived Categories in Birational Geometry, Enumerative Geometry, and Non-commutative Algebra
合作研究:双有理几何、枚举几何和非交换代数中的派生范畴
  • 批准号:
    2302262
  • 财政年份:
    2023
  • 资助金额:
    $ 11.36万
  • 项目类别:
    Standard Grant
Eco Warrior: Expanding to new Plastic Free Categories
生态战士:扩展到新的无塑料类别
  • 批准号:
    10055912
  • 财政年份:
    2023
  • 资助金额:
    $ 11.36万
  • 项目类别:
    Grant for R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了