CDS&E: Collaborative Research: Private Data Analytics, Synthesis, and Sharing for Large-Scale Multi-Modal Smart City Mobility Research

CDS

基本信息

  • 批准号:
    2002985
  • 负责人:
  • 金额:
    $ 16.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

Given the trend towards urbanization, understanding real-time human mobility in urban areas has become increasingly important for many research areas from Mobile Networking, to Transportation/Urban Planning, Behavior Modeling, Emergency Response, to recent Pandemic Mitigation. Many analytical models have been proposed to understand human mobility based on mobility data. However, most of these data are proprietary and cannot be accessed by the research community at large. Fortunately, based on the latest expansion of urban infrastructures, such mobility data has been collected by city government agencies and some companies that are willing to share the data for social good. However, a key challenge is the privacy concern since such data usually have sensitive information and system design details for potential privacy and security issues. To address this issue, the project aims to generate realistic yet synthetic mobility data through machine learning based on the real mobility data analytics and then share these realistic synthetic data with the research community. The objective of the project is to lower the entry barriers for interdisciplinary researchers in mobility data-intensive research aimed at addressing major scientific/societal challenges related to urban mobility.The core merit of the project lies in integrating two aims, i.e., privacy-preserving data synthesis and data integration, for large-scale smart city mobility research. For the first research aim, the project plans to utilize recent advances in Generative Adversarial Networks (GANs) to enable large-scale mobility data synthesis. The goal is to achieve the individual-level release of realistic synthetic mobility data by GAN-based models targeting key characteristics of human mobility. The GAN architecture proposed has novel technical components to augment basic GAN frameworks, which optimize the fundamental trade-off between privacy (regarding removing/obfuscating sensitive mobility features) and utility (in terms of preserving non-sensitive mobility features) with long-range dependencies (in terms of repeated mobility patterns) revealed. For the second research aim, the PIs plans to perform multi-modal data integration based on aligned multi-tensor decomposition under mobility semantics. The technical approach proposed is to enable multi-modal data integration based on synthetic single-modal data for comprehensive mobility modeling with a set of machine learning techniques including novel mobility semantic learning and multi-tensor decomposition with aligned spatiotemporal granularity.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
鉴于城市化的趋势,了解城市地区的实时人类流动性对于许多研究领域变得越来越重要,从移动的网络,到交通/城市规划,行为建模,应急响应,到最近的流行病缓解。许多分析模型已被提出来理解基于移动数据的人类移动性。然而,这些数据大多是专有的,一般研究界无法获得。幸运的是,基于城市基础设施的最新扩张,这些移动数据已经被城市政府机构和一些愿意分享数据以造福社会的公司收集。然而,一个关键的挑战是隐私问题,因为这些数据通常包含敏感信息和潜在隐私和安全问题的系统设计细节。为了解决这个问题,该项目旨在通过基于真实的移动数据分析的机器学习生成真实而合成的移动数据,然后与研究社区共享这些真实的合成数据。该项目的目标是降低跨学科研究人员在流动数据密集型研究中的准入门槛,旨在解决与城市流动相关的重大科学/社会挑战。该项目的核心价值在于整合两个目标,即,隐私保护数据合成和数据集成,用于大规模智能城市移动研究。对于第一个研究目标,该项目计划利用生成对抗网络(GAN)的最新进展来实现大规模移动数据合成。其目标是通过基于GAN的模型,针对人类移动的关键特征,实现个人层面的真实合成移动数据发布。提出的GAN架构具有新颖的技术组件来增强基本的GAN框架,其优化了隐私(关于删除/混淆敏感的移动性特征)和效用(在保留非敏感的移动性特征方面)之间的基本权衡,并揭示了长期依赖性(在重复的移动性模式方面)。对于第二个研究目标,PI计划在移动语义下基于对齐的多张量分解执行多模态数据集成。提出的技术方法是基于合成的单模态数据进行多模态数据集成,以通过一组机器学习技术进行综合移动建模,包括新颖的移动语义学习和具有对齐时空粒度的多张量分解。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
TransRisk: Mobility Privacy Risk Prediction based on Transferred Knowledge
TransRisk:基于转移知识的移动隐私风险预测
  • DOI:
    10.1145/3534581
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xie, Xiaoyang;Hong, Zhiqing;Qin, Zhou;Fang, Zhihan;Tian, Yuan;Zhang, Desheng
  • 通讯作者:
    Zhang, Desheng
Understanding and Mitigating Accuracy Disparity in Regression
  • DOI:
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jianfeng Chi;Yuan Tian;Geoffrey J. Gordon;Han Zhao
  • 通讯作者:
    Jianfeng Chi;Yuan Tian;Geoffrey J. Gordon;Han Zhao
Towards Return Parity in Markov Decision Processes
  • DOI:
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jianfeng Chi;Jian Shen;Xinyi Dai;Weinan Zhang;Yuan Tian;Han Zhao
  • 通讯作者:
    Jianfeng Chi;Jian Shen;Xinyi Dai;Weinan Zhang;Yuan Tian;Han Zhao
Model-Targeted Poisoning Attacks with Provable Convergence
具有可证明收敛性的模型目标中毒攻击
CryptGPU: Fast Privacy-Preserving Machine Learning on the GPU
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Evans其他文献

State needed to infer data use compliance in distributed transport applications
国家需要推断分布式传输应用程序中的数据使用合规性
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Evans;D. Eyers
  • 通讯作者:
    D. Eyers
Stealthy Backdoors as Compression Artifacts
作为压缩工件的隐形后门
Discordant Harmonies and Turbulent Serenity: The Ecopoetic Rhythms of Nature’s — and Art’s — Resistance
不和谐的和谐与动荡的宁静:自然和艺术的抵抗的生态诗意节奏
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Evans
  • 通讯作者:
    David Evans
Towards Differential Program Analysis
走向微分程序分析
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joel Winstead;David Evans
  • 通讯作者:
    David Evans
Do metrics derived from self-reported and clinician-reported pain drawings agree for individuals with chronic low back pain?
来自自我报告和临床医生报告的疼痛图的指标对于慢性腰痛患者是否一致?

David Evans的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Evans', 18)}}的其他基金

Birmingham Nuclear Physics Consolidated Grant 2023
伯明翰核物理综合赠款 2023
  • 批准号:
    ST/Y00034X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Research Grant
Mechanistically understanding biomineralisation and ancient ocean chemistry changes to facilitate robust climate model validation
从机械角度理解生物矿化和古代海洋化学变化,以促进稳健的气候模型验证
  • 批准号:
    EP/Y034252/1
  • 财政年份:
    2023
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Research Grant
Birmingham Nuclear Physics Consolidated Grant 2020
伯明翰核物理综合补助金 2020
  • 批准号:
    ST/V001043/1
  • 财政年份:
    2021
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Research Grant
Collaborative Research: Paleomagnetism and Geochronology of Mafic Dikes in Morocco, Reconstructing West Africa in Proterozoic Supercontinents
合作研究:摩洛哥镁铁质岩脉的古地磁学和地质年代学,重建元古代超大陆中的西非
  • 批准号:
    1953549
  • 财政年份:
    2020
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
Collaborative Research: A Unified Framework for Optimal Public Debt Management
合作研究:最优公共债务管理的统一框架
  • 批准号:
    1918748
  • 财政年份:
    2019
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
Chronic bee paralysis virus: The epidemiology, evolution and mitigation of an emerging threat to honey bees.
慢性蜜蜂麻痹病毒:对蜜蜂的新威胁的流行病学、进化和缓解。
  • 批准号:
    BB/R00305X/1
  • 财政年份:
    2018
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Research Grant
SaTC: CORE: Frontier: Collaborative: End-to-End Trustworthiness of Machine-Learning Systems
SaTC:核心:前沿:协作:机器学习系统的端到端可信度
  • 批准号:
    1804603
  • 财政年份:
    2018
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Continuing Grant
SaTC: CORE: Small: Multi-Party High-dimensional Machine Learning with Privacy
SaTC:核心:小型:具有隐私性的多方高维机器学习
  • 批准号:
    1717950
  • 财政年份:
    2017
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
The search for the exotic : subfactors, conformal field theories and modular tensor categories
寻找奇异的东西:子因子、共形场论和模张量类别
  • 批准号:
    EP/N022432/1
  • 财政年份:
    2016
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Research Grant
The biology and pathogenesis of Deformed Wing Virus, the major virus pathogen of honeybees
蜜蜂主要病毒病原变形翅病毒的生物学和发病机制
  • 批准号:
    BB/M00337X/2
  • 财政年份:
    2016
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Research Grant

相似海外基金

Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348998
  • 财政年份:
    2025
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348999
  • 财政年份:
    2025
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigating Southern Ocean Sea Surface Temperatures and Freshening during the Late Pliocene and Pleistocene along the Antarctic Margin
合作研究:调查上新世晚期和更新世沿南极边缘的南大洋海面温度和新鲜度
  • 批准号:
    2313120
  • 财政年份:
    2024
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFDEB-NERC: Warming's silver lining? Thermal compensation at multiple levels of organization may promote stream ecosystem stability in response to drought
合作研究:NSFDEB-NERC:变暖的一线希望?
  • 批准号:
    2312706
  • 财政年份:
    2024
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
  • 批准号:
    2318855
  • 财政年份:
    2024
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding Environmental and Ecological Controls on Carbon Export and Flux Attenuation near Bermuda
合作研究:了解百慕大附近碳输出和通量衰减的环境和生态控制
  • 批准号:
    2318940
  • 财政年份:
    2024
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
  • 批准号:
    2319097
  • 财政年份:
    2024
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
Collaborative Research: URoL:ASC: Determining the relationship between genes and ecosystem processes to improve biogeochemical models for nutrient management
合作研究:URoL:ASC:确定基因与生态系统过程之间的关系,以改进营养管理的生物地球化学模型
  • 批准号:
    2319123
  • 财政年份:
    2024
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
  • 批准号:
    2319848
  • 财政年份:
    2024
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:Cyber​​Training:试点:PowerCyber​​:电力工程研究人员的计算培训
  • 批准号:
    2319895
  • 财政年份:
    2024
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了