The search for the exotic : subfactors, conformal field theories and modular tensor categories
寻找奇异的东西:子因子、共形场论和模张量类别
基本信息
- 批准号:EP/N022432/1
- 负责人:
- 金额:$ 44.04万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the early 1980's, Vaughan Jones introduced his subfactor theory in the analysis of von Neumann algebras of operators. This theory has since found deep connections with knot theory in topology and geometry, statistical mechanics and conformal quantum field theory. A subfactor encodes the symmetry of a statistical mechanical model or at the critical temperature a conformal quantum field theory. Dimension is ubiquitous in mathematics. The Jones index measures the relative dimension of the larger algebra over the smaller. K-theory also provides tools for understanding dimension and both of these notions are at the heart of this project.It was thought that exotic models could be produced in the subfactor framework beyond the standard models which had underlying classical group symmetries. However producing such models proved elusive. In 1993 Uffe Haagerup produced a candidate for an exotic subfactor of irrational dimension, namely the Jones index is half of 5 plus the square root of 13 - by essentially producing the Boltzmann weights at criticality by his bare hands with strong integrability properties. However Evans and Gannon have shown that one can understand this subfactor from classical symmetries of an elementary finite group, the symmetries of three objects, and the group of orthogonal transformations in 13 dimensions, producing evidence for an underlying conformal quantum field theory to be described by a conformal net or vertex operator algebra. They have also provided evidence that the Haagerup family belongs to an infinite family and most recently found another related series of quadratic systems, with again strong evidence of underlying conformal field theories based on underlying classical symmetries.This programme is to analyse and shed light on these mysterious subfactors and quadratic systems, the Haagerup systems and related series, thought to be infinite, the near group systems, their common generalizations as quadratic systems. The tools are from operator algebras, particularly subfactors, conformal nets and twisted equivariant K-theory. The objectives are the realization of the underlying modular tensor categories of their doubles or symmetric enveloping algebras and the recovery of the quadratic systems.
在1980年代早期,Vaughan Jones将他的子因子理论引入到冯·诺依曼算子代数的分析中。这个理论与拓扑学和几何学中的纽结理论、统计力学和共形量子场论有着深刻的联系。子因子编码统计力学模型的对称性,或者在临界温度下编码共形量子场论的对称性。维数在数学中无处不在。琼斯指数测量较大代数相对于较小代数的相对维数。K-理论也提供了工具来理解尺寸和这两个概念是在这个项目的心脏。人们认为,异国情调的模型可以产生的子因子框架超出了标准模型的基础经典群对称性。然而,制作这样的模型被证明是难以捉摸的。在1993年乌夫Haagerup产生了一个候选人的异国情调的子因子的不合理的方面,即琼斯指数是一半的5加上平方根的13 -基本上生产的玻尔兹曼重量在临界状态下,由他赤手空拳与强大的可积性。然而,埃文斯和甘农已经证明,人们可以从基本有限群的经典对称性、三个物体的对称性和13维正交变换群中理解这个子因子,从而为基础的共形量子场论可以用共形网或顶点算子代数来描述提供了证据。他们还提供了证据表明,Haagerup家庭属于一个无限的家庭,最近发现了另一个相关系列的二次系统,再次强有力的证据基础上的基本经典对称性的基础共形场理论。这个计划是分析和阐明这些神秘的子因子和二次系统,Haagerup系统和相关系列,被认为是无限的,近群系统,它们的普遍推广为二次系统。这些工具来自算子代数,特别是子因子,共形网和扭曲等变K理论。目标是实现其对偶或对称包络代数的基本模张量范畴和恢复二次系统。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Classification of module categories for SO(3)2
SO(3)2 模块类别的分类
- DOI:10.1016/j.aim.2021.107713
- 发表时间:2021
- 期刊:
- 影响因子:1.7
- 作者:Evans D
- 通讯作者:Evans D
Classification of Module Categories for $SO(3)_{2m}$
$SO(3)_{2m}$ 的模块类别分类
- DOI:10.48550/arxiv.1804.07714
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Evans D
- 通讯作者:Evans D
Reconstruction and local extensions for twisted group doubles, and permutation orbifolds
- DOI:10.1090/tran/8575
- 发表时间:2018-04
- 期刊:
- 影响因子:0
- 作者:David E. Evans;T. Gannon
- 通讯作者:David E. Evans;T. Gannon
Spectral measures for G2, II: Finite subgroups
G2, II 的谱测度:有限子群
- DOI:10.1142/s0129055x20500269
- 发表时间:2020
- 期刊:
- 影响因子:1.8
- 作者:Evans D
- 通讯作者:Evans D
Realizing the Braided Temperley-Lieb-Jones C*-Tensor Categories as Hilbert C*-Modules
将编织 Temperley-Lieb-Jones C*-张量范畴实现为 Hilbert C*-模
- DOI:10.1007/s00220-020-03729-w
- 发表时间:2020
- 期刊:
- 影响因子:2.4
- 作者:Aaserud A
- 通讯作者:Aaserud A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Evans其他文献
State needed to infer data use compliance in distributed transport applications
国家需要推断分布式传输应用程序中的数据使用合规性
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
David Evans;D. Eyers - 通讯作者:
D. Eyers
Stealthy Backdoors as Compression Artifacts
作为压缩工件的隐形后门
- DOI:
10.1109/tifs.2022.3160359 - 发表时间:
2021-04 - 期刊:
- 影响因子:0
- 作者:
Yulong Tian;Fnu Suya;Fengyuan Xu;David Evans - 通讯作者:
David Evans
Discordant Harmonies and Turbulent Serenity: The Ecopoetic Rhythms of Nature’s — and Art’s — Resistance
不和谐的和谐与动荡的宁静:自然和艺术的抵抗的生态诗意节奏
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
David Evans - 通讯作者:
David Evans
Towards Differential Program Analysis
走向微分程序分析
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Joel Winstead;David Evans - 通讯作者:
David Evans
Do metrics derived from self-reported and clinician-reported pain drawings agree for individuals with chronic low back pain?
来自自我报告和临床医生报告的疼痛图的指标对于慢性腰痛患者是否一致?
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:2.3
- 作者:
M. Barbero;Matthew Piff;David Evans;Deborah Falla - 通讯作者:
Deborah Falla
David Evans的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Evans', 18)}}的其他基金
Birmingham Nuclear Physics Consolidated Grant 2023
伯明翰核物理综合赠款 2023
- 批准号:
ST/Y00034X/1 - 财政年份:2024
- 资助金额:
$ 44.04万 - 项目类别:
Research Grant
Mechanistically understanding biomineralisation and ancient ocean chemistry changes to facilitate robust climate model validation
从机械角度理解生物矿化和古代海洋化学变化,以促进稳健的气候模型验证
- 批准号:
EP/Y034252/1 - 财政年份:2023
- 资助金额:
$ 44.04万 - 项目类别:
Research Grant
Birmingham Nuclear Physics Consolidated Grant 2020
伯明翰核物理综合补助金 2020
- 批准号:
ST/V001043/1 - 财政年份:2021
- 资助金额:
$ 44.04万 - 项目类别:
Research Grant
Collaborative Research: Paleomagnetism and Geochronology of Mafic Dikes in Morocco, Reconstructing West Africa in Proterozoic Supercontinents
合作研究:摩洛哥镁铁质岩脉的古地磁学和地质年代学,重建元古代超大陆中的西非
- 批准号:
1953549 - 财政年份:2020
- 资助金额:
$ 44.04万 - 项目类别:
Standard Grant
CDS&E: Collaborative Research: Private Data Analytics, Synthesis, and Sharing for Large-Scale Multi-Modal Smart City Mobility Research
CDS
- 批准号:
2002985 - 财政年份:2020
- 资助金额:
$ 44.04万 - 项目类别:
Standard Grant
Collaborative Research: A Unified Framework for Optimal Public Debt Management
合作研究:最优公共债务管理的统一框架
- 批准号:
1918748 - 财政年份:2019
- 资助金额:
$ 44.04万 - 项目类别:
Standard Grant
Chronic bee paralysis virus: The epidemiology, evolution and mitigation of an emerging threat to honey bees.
慢性蜜蜂麻痹病毒:对蜜蜂的新威胁的流行病学、进化和缓解。
- 批准号:
BB/R00305X/1 - 财政年份:2018
- 资助金额:
$ 44.04万 - 项目类别:
Research Grant
SaTC: CORE: Frontier: Collaborative: End-to-End Trustworthiness of Machine-Learning Systems
SaTC:核心:前沿:协作:机器学习系统的端到端可信度
- 批准号:
1804603 - 财政年份:2018
- 资助金额:
$ 44.04万 - 项目类别:
Continuing Grant
SaTC: CORE: Small: Multi-Party High-dimensional Machine Learning with Privacy
SaTC:核心:小型:具有隐私性的多方高维机器学习
- 批准号:
1717950 - 财政年份:2017
- 资助金额:
$ 44.04万 - 项目类别:
Standard Grant
The biology and pathogenesis of Deformed Wing Virus, the major virus pathogen of honeybees
蜜蜂主要病毒病原变形翅病毒的生物学和发病机制
- 批准号:
BB/M00337X/2 - 财政年份:2016
- 资助金额:
$ 44.04万 - 项目类别:
Research Grant
相似海外基金
Exotic isotope production for medical applications
用于医疗应用的奇异同位素生产
- 批准号:
MR/X036561/1 - 财政年份:2024
- 资助金额:
$ 44.04万 - 项目类别:
Fellowship
Integrating Hamiltonian Effective Field Theory with Lattice QCD and Experimental Results to study Heavy Exotic Hadron Spectroscopy
哈密顿有效场论与晶格 QCD 和实验结果相结合,研究重奇异强子谱
- 批准号:
24K17055 - 财政年份:2024
- 资助金额:
$ 44.04万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Invasion success of exotic ants promoted by newly-evolved castes
新进化种姓推动外来蚂蚁入侵成功
- 批准号:
23KJ0615 - 财政年份:2023
- 资助金额:
$ 44.04万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Consequences of secondary contact between native and closely related exotic species: ecological processes and genome dynamics
本地物种和密切相关的外来物种之间二次接触的后果:生态过程和基因组动态
- 批准号:
23KJ2156 - 财政年份:2023
- 资助金额:
$ 44.04万 - 项目类别:
Grant-in-Aid for JSPS Fellows
New generation sky surveys, exotic transients and gravitational wave sources
新一代巡天、奇异瞬变和引力波源
- 批准号:
ST/X006506/1 - 财政年份:2023
- 资助金额:
$ 44.04万 - 项目类别:
Research Grant
Comprehensive understanding of the quantum criticality yielding the exotic superconductivity and the non-Fermi-liquid behavior
全面了解产生奇异超导性和非费米液体行为的量子临界性
- 批准号:
23K03315 - 财政年份:2023
- 资助金额:
$ 44.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Enhancement of the spin-orbit interaction and exotic superconductivity in correlated metals
相关金属中自旋轨道相互作用和奇异超导性的增强
- 批准号:
23K03330 - 财政年份:2023
- 资助金额:
$ 44.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Spectroscopy of exotic reflection-asymmetric atomic nuclei
奇异反射不对称原子核的光谱学
- 批准号:
2881643 - 财政年份:2023
- 资助金额:
$ 44.04万 - 项目类别:
Studentship
The mathematics of exotic phases: fractons
奇异相的数学:分形
- 批准号:
2881673 - 财政年份:2023
- 资助金额:
$ 44.04万 - 项目类别:
Studentship
Conference: Twentieth Exotic Beam Summer School (EBSS2023)
会议:第二十届奇异光束暑期学校(EBSS2023)
- 批准号:
2309936 - 财政年份:2023
- 资助金额:
$ 44.04万 - 项目类别:
Standard Grant