Engineering Band Gap Energy Through Structural Motifs in Nitride Semiconductors
通过氮化物半导体中的结构图案设计带隙能量
基本信息
- 批准号:2003581
- 负责人:
- 金额:$ 44.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nontechnical SummarySemiconductor materials form the basis for practically all electronics, from solar cells and solid state lighting, to complex integrated circuits such as microprocessors. Nevertheless, despite a century of investigation, researchers are still making fundamental discoveries in this field – discoveries which lead to improved device performance, reduced manufacturing cost, or streamlined integration with other technologies. The project activity is based on the unexpected discovery by the research team that the fundamental properties of semiconductor materials stem directly from atomic-scale structural motifs, and not deviations from periodicity as is generally accepted. By shifting that viewpoint, it is possible to achieve a much larger range of parameter values than previously realized. The result is a completely new approach to selecting materials for specific applications. The project also incorporates development of outreach activities for both middle school children and teachers, involving the community directly in the project by investigating how artificial intelligence/machine learning techniques are applied to image recognition and data analysis, thereby helping to ensure a diverse and motivated pool of young students for careers in science/technology/engineering/math (STEM) fields.Technical SummaryAs part of a previous study on how cation disorder changes the band gap energy of the earth abundant element, sustainably-sourced ternary heterovalent semiconductor ZnSnN2, the research team has discovered the unexpected role played by structural motifs in determining this most fundamental of all semiconductor parameters. Carefully designed experiments indicate that it is not only possible to close the band gap of this material through systematic variation of the type and concentration of motifs that make up the lattice, but it is also possible to access "negative" band gap energies, corresponding to inverted bands. Further, preliminary evidence indicates that the same effect is possible in other compound semiconductors, including the commercially important InGaN family of materials, again through the action of structural motifs. The project investigates the full range of achievable band gap energies of both of these nitrogen-based material systems using plasma-assisted molecular beam epitaxy based crystal growth in conjunction with a complementary suite of optical absorption, Hall effect and electron and x-ray diffraction techniques, with a view towards understanding the ramifications for charge carrier transport, optical properties, and ultimately material selection choices for devices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
半导体材料构成了几乎所有电子产品的基础,从太阳能电池和固态照明到复杂的集成电路,如微处理器。然而,尽管经过了世纪的研究,研究人员仍在这一领域取得了根本性的发现-这些发现导致了器件性能的提高、制造成本的降低或与其他技术的流线型集成。该项目活动基于研究团队的意外发现,即半导体材料的基本特性直接源于原子尺度的结构图案,而不是普遍接受的周期性偏差。通过改变这种观点,可以实现比以前实现的更大范围的参数值。其结果是为特定应用选择材料的全新方法。该项目还包括为中学生和教师开展外展活动,通过调查人工智能/机器学习技术如何应用于图像识别和数据分析,让社区直接参与项目,从而有助于确保年轻学生的多元化和积极性,以从事科学/技术/工程/数学(STEM)职业作为先前关于阳离子无序如何改变地球上丰富的元素、可持续来源的三元异价半导体ZnSnN 2的带隙能量的研究的一部分,研究小组已经发现了结构基序在确定所有半导体参数中最基本的参数时所发挥的意想不到的作用。精心设计的实验表明,不仅可以通过系统地改变构成晶格的图案的类型和浓度来关闭这种材料的带隙,而且还可以获得对应于反转带的“负”带隙能量。此外,初步证据表明,同样的效果也可能出现在其他化合物半导体中,包括商业上重要的InGaN材料家族,同样是通过结构基序的作用。该项目研究了这两种氮基材料系统的全范围可实现的带隙能量,使用基于等离子体辅助分子束外延的晶体生长,结合光学吸收、霍尔效应、电子和X射线衍射技术的互补套件,以期了解电荷载流子传输、光学特性、该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantitative analysis of the impact of disorder on the structural and electrical properties of polymer fibers
- DOI:10.1557/s43580-022-00368-2
- 发表时间:2022-11-02
- 期刊:
- 影响因子:0.8
- 作者:Makin,R. A.;Hanumantharao,S. N.;Durbin,S. M.
- 通讯作者:Durbin,S. M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Durbin其他文献
Steven Durbin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Durbin', 18)}}的其他基金
I-Corps: End-User Trained Augmentative/Alternative Communication Tablet for Speech-Impaired Patients
I-Corps:经过最终用户培训的针对言语障碍患者的增强/替代通信平板电脑
- 批准号:
1935382 - 财政年份:2019
- 资助金额:
$ 44.31万 - 项目类别:
Standard Grant
EAGER: Earth Abundant Element Nitride Semiconductors Based on ZnSnN2
EAGER:地球储量丰富的基于 ZnSnN2 的氮化物半导体
- 批准号:
1410915 - 财政年份:2013
- 资助金额:
$ 44.31万 - 项目类别:
Continuing Grant
EAGER: Earth Abundant Element Nitride Semiconductors Based on ZnSnN2
EAGER:地球储量丰富的基于 ZnSnN2 的氮化物半导体
- 批准号:
1244887 - 财政年份:2012
- 资助金额:
$ 44.31万 - 项目类别:
Continuing Grant
相似国自然基金
人参结合Band-3蛋白胞质结构域调控蛋白复合物装配调节红细胞形态和功能的分子机制研究
- 批准号:82004074
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
CD47和Band3介导的衰老红细胞吞噬机制的单分子定位成像研究
- 批准号:81501432
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
Band3蛋白关联的一种新活性蛋白酶的纯化、基因克隆及其特性研究
- 批准号:39970291
- 批准年份:1999
- 资助金额:11.0 万元
- 项目类别:面上项目
相似海外基金
'Investigating the impact of Bismuth on the band gap engineering and morphological properties of III/V semiconductor materials grown using MBE'.
“研究铋对使用 MBE 生长的 III/V 半导体材料的带隙工程和形态特性的影响”。
- 批准号:
2602258 - 财政年份:2021
- 资助金额:
$ 44.31万 - 项目类别:
Studentship
Band-edge engineering and property control in wide band-gap sulfide semiconductors
宽带隙硫化物半导体的带边工程和性能控制
- 批准号:
21K04906 - 财政年份:2021
- 资助金额:
$ 44.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Band gap engineering in graphene nanoribbons and their heterostructures
石墨烯纳米带及其异质结构的带隙工程
- 批准号:
432024334 - 财政年份:2019
- 资助金额:
$ 44.31万 - 项目类别:
Research Grants
Site-specific chemical adsorption on graphene nanoribbon toward active band-gap engineering
石墨烯纳米带上的位点特异性化学吸附实现活性带隙工程
- 批准号:
19KK0136 - 财政年份:2019
- 资助金额:
$ 44.31万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Band-gap engineering of novel phosphors with narrow f-f emission
窄 f-f 发射新型荧光粉的带隙工程
- 批准号:
18K04714 - 财政年份:2018
- 资助金额:
$ 44.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fabrication and optical properties of transparent ceramic persistent phosphors based on band-gap engineering
基于带隙工程的透明陶瓷持久荧光粉的制备及光学性能
- 批准号:
16J09849 - 财政年份:2016
- 资助金额:
$ 44.31万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Topological Insulators by Band-Gap Engineering
带隙工程拓扑绝缘体
- 批准号:
1508644 - 财政年份:2015
- 资助金额:
$ 44.31万 - 项目类别:
Standard Grant
EPSRC Engineering Fellowships for Growth: Narrow Band-gap Semiconductors for Integrated Sensing and Communications
EPSRC 工程增长奖学金:用于集成传感和通信的窄带隙半导体
- 批准号:
EP/M002411/1 - 财政年份:2014
- 资助金额:
$ 44.31万 - 项目类别:
Fellowship
Band-gap Engineering of Titanium Dioxide Using Compensated Doping
使用补偿掺杂的二氧化钛带隙工程
- 批准号:
448763-2013 - 财政年份:2013
- 资助金额:
$ 44.31万 - 项目类别:
University Undergraduate Student Research Awards
Ta3N5 nanotubes and -rods: doping, band-gap engineering and stabilization (co-catalysis)
Ta3N5 纳米管和棒:掺杂、带隙工程和稳定化(共催化)
- 批准号:
221381263 - 财政年份:2012
- 资助金额:
$ 44.31万 - 项目类别:
Priority Programmes