Self-Propelling Microbubblers for Active Cleaning of Biofilm in Confined Spaces
用于主动清洁密闭空间中生物膜的自推进微泡器
基本信息
- 批准号:2004719
- 负责人:
- 金额:$ 49.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-15 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PART 1: NON-TECHNICAL SUMMARYDense microbial films called “biofilm” often foul medical tools, household items, and infrastructures such as an endoscopes, bathroom tiles, and water supply pipes, and can lead to dangerous infections. These biofilms are slimy aggregates of bacterial cells surrounded by scaffolds adhering to anything they touch. About 80 percent of all medical infections originate from biofilms that invade the inner workings of clinical devices and implants inside patients. Cleaning of biofilms in such a hard-to-reach area is extremely difficult because traditional disinfectants and antibiotics cannot penetrate a biofilm's tough scaffolds. How can we let antibacterial reagents cross over such a barrier of biofilms? This proposed study attempts to develop a small particle that can penetrate and destroy tough scaffolds by generating oxygen bubbles. The particle named “self-propelling microbubbler” would be prepared by loading an oxygen-generating chemical on diatoms – the tiny skeletons of algae. As a consequence, this system would improve the delivery of antibacterial deathblow to the bacterial cells living inside. While tuning the oxygen bubble generation rate and subsequent propulsion speed of the micrububblers, this proposed study will examine extents that the microbubblers can penetrate biofilm clinging to a material with complex topology, damages the scaffold of biofilms, kill bacterial cells protected by the scaffolds, and, ultimately, prevent the return of biofilm formation. In parallel, for broad impacts, the unique microbubblers will be used as education and training tools for a new generation of bioscientists and bioengineers. Overall, this project will serve to improve people’s health, safety, and life quality against infectious diseases and fouling.PART 2: TECHNICAL SUMMARY Biofilms composed of microbial cell colonies and surrounding extracellular polymer substances (EPS) are major causes of medical infection and material deterioration, thus threatening both human health and sustainability. A variety of disinfectants were developed to date, but none of these systems are active in removing biofilms forming in confined spaces. To this end, this proposed study aims to assemble and analyze a “self-propelling microbubbler” that can invade biofilms grown in the hard-to-reach area and, subsequently, clean out both bacterial colonies and EPS. This study hypothesizes that diatom particles doped with zinc oxide (ZnO) or manganese dioxide (MnO2) catalysts decomposing hydrogen peroxide (H2O2) eject oxygen bubbles and, in turn, act as the self-propelling microbubbler in the antiseptic 3% H2O2 solution. After the invasion, the microbubblers would continue to generate oxygen bubbles that fuse to produce a wave of mechanical energy capable of destroying the biofilms. The self-propulsion of microbubblers will be studied by analyzing the activation energy for H2O2 decomposition, the H2O2 decomposition rate, and the kinetic energy. In parallel, the extent that the microbubblers remove biofilm in the micro-grooved substrate will be examined by monitoring invasion of particles into the biofilm and subsequent changes in stiffness, adhesion force, and chemical composition of the biofilms formed by Escherichia coli and Pseudomonas aeruginosa. Finally, the efficacy of microbubblers to killing biofilm bacteria will be evaluated by monitoring the increase of intracellular oxidative stress, the reduction of viable cells, and the recurrence of biofilm. The successful completion of this study will elucidate the unique cleaning mechanism attained by chemical-to-mechanical energy conversion and transform current disinfection strategies that rely on chemicals mostly. In parallel, this project will make broad impacts by incorporating the proposed research modules into several educational programs developed for students at various educational levels and also disseminating the research outcomes to a broad spectrum of communities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
第一部分: 非技术概述被称为“生物膜”的致密微生物膜经常污染医疗工具、家用物品和基础设施,如内窥镜、浴室瓷砖和供水管道,并可能导致危险的感染。这些生物膜是细菌细胞的粘糊糊的聚集体,周围是附着在它们所接触的任何东西上的支架。大约80%的医疗感染来源于生物膜,这些生物膜侵入了患者体内的临床设备和植入物的内部工作。在这样一个难以到达的区域清洁生物膜是非常困难的,因为传统的消毒剂和抗生素不能穿透生物膜的坚韧支架。我们如何才能让抗菌剂穿过这样一个生物膜的屏障?这项拟议的研究试图开发一种小颗粒,它可以通过产生氧气泡来穿透和破坏坚韧的支架。这种名为“自推进微气泡”的粒子将通过在硅藻(藻类的微小骨架)上加载一种产生氧气的化学物质来制备。因此,该系统将改善抗菌致命一击的交付生活在里面的细菌细胞。在调整氧气气泡产生速率和随后的微气泡推进速度的同时,这项拟议的研究将检查微气泡可以穿透附着在具有复杂拓扑结构的材料上的生物膜的程度,破坏生物膜的支架,杀死受支架保护的细菌细胞,并最终防止生物膜形成的返回。同时,为了产生广泛的影响,独特的微泡器将被用作新一代生物科学家和生物工程师的教育和培训工具。总的来说,该项目将有助于提高人们的健康,安全和生活质量,防止传染病和污垢。 由微生物细胞菌落和周围的胞外聚合物物质(EPS)组成的生物膜是医疗感染和材料劣化的主要原因,从而威胁人类健康和可持续性。迄今为止开发了各种消毒剂,但这些系统都不能有效地去除在密闭空间中形成的生物膜。为此,这项拟议的研究旨在组装和分析一种“自推进微气泡器”,它可以侵入生长在难以到达区域的生物膜,随后清除细菌菌落和EPS。本研究假设,硅藻颗粒掺杂氧化锌(ZnO)或二氧化锰(MnO 2)催化剂分解过氧化氢(H2 O2)喷射氧气泡,反过来,作为自推进微气泡在防腐剂3%H2 O2溶液。在入侵之后,微泡器将继续产生氧气泡,这些氧气泡融合产生能够破坏生物膜的机械能波。通过分析H2 O2分解的活化能、H2 O2分解速率和动能来研究微泡器的自推进。平行地,微泡器去除微槽基底中的生物膜的程度将通过监测颗粒侵入生物膜以及随后由大肠杆菌和铜绿假单胞菌形成的生物膜的刚度、粘附力和化学组成的变化来检查。最后,将通过监测细胞内氧化应激的增加、活细胞的减少和生物膜的复发来评估微泡器杀死生物膜细菌的功效。这项研究的成功完成将阐明通过化学-机械能转换实现的独特清洁机制,并改变目前主要依赖化学品的消毒策略。与此同时,该项目将通过将拟议的研究模块纳入为不同教育水平的学生开发的多个教育项目中,并将研究成果传播到广泛的社区,从而产生广泛的影响。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hyunjoon Kong其他文献
emIn situ/em immobilization of δ-MnOsub2/sub nanosheets on a porous support for rapid and continuous cleaning of bisphenol A-spiked water
原位/固定化的 δ-MnO₂纳米片在多孔载体上用于快速连续清洁含双酚 A 的水
- DOI:
10.1016/j.cej.2023.144653 - 发表时间:
2023-09-15 - 期刊:
- 影响因子:13.200
- 作者:
Yu-Heng Deng;Jemin Jeon;Eun Mi Kim;Shengzhe Ding;Sang Ah Lee;Changseon Ryu;Young Jun Kim;Xiao Su;Hyunjoon Kong - 通讯作者:
Hyunjoon Kong
Biofilm comes back: Controlling regrowth by mitigating the cell-matrix interaction
生物膜卷土重来:通过减轻细胞-基质相互作用来控制再生长
- DOI:
10.1016/j.cej.2025.160947 - 发表时间:
2025-03-15 - 期刊:
- 影响因子:13.200
- 作者:
Yu-Heng Deng;Joo Hun Lee;Myung-Joo Kim;Hyunjoon Kong - 通讯作者:
Hyunjoon Kong
Empowering Engineered Muscle Function by Extending Connexin 43 Duration with Reduced Graphene Oxides
通过减少氧化石墨烯延长 Connexin 43 持续时间来增强工程肌肉功能
- DOI:
10.1101/2021.12.08.470989 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Eunkyung Ko;Onur Aydin;Zhengwei Li;Lauren Gapinske;Kai;T. Saif;Rashid Bashir;Hyunjoon Kong - 通讯作者:
Hyunjoon Kong
Decellularized Matrix Produced by Mesenchymal Stem Cells Modulates Growth and Metabolic Activity of Hepatic Cell Cluster.
间充质干细胞产生的脱细胞基质调节肝细胞簇的生长和代谢活性。
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:5.8
- 作者:
JooYeon Park;Joyeon Kim;Kathryn M. Sullivan;S. Baik;Eunkyung Ko;Myung;Young Jun Kim;Hyunjoon Kong - 通讯作者:
Hyunjoon Kong
Delivery-mediated exosomal therapeutics in ischemia–reperfusion injury: advances, mechanisms, and future directions
- DOI:
10.1186/s40580-024-00423-8 - 发表时间:
2024-04-30 - 期刊:
- 影响因子:11.000
- 作者:
Shengzhe Ding;Yu-Jin Kim;Kai-Yu Huang;Daniel Um;Youngmee Jung;Hyunjoon Kong - 通讯作者:
Hyunjoon Kong
Hyunjoon Kong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hyunjoon Kong', 18)}}的其他基金
Collaborative Research: Three-Dimensional Flexible Biosensor Enabling Label-Free Spatial Mapping of Intra-Organoid Functions
合作研究:三维柔性生物传感器实现器官内功能的无标记空间映射
- 批准号:
2032521 - 财政年份:2021
- 资助金额:
$ 49.5万 - 项目类别:
Standard Grant
Engineering Neuron-Innervated Muscle with Stimulus-Responsive Contraction and Myokine Secretion
工程神经元支配的肌肉具有刺激响应性收缩和肌因子分泌
- 批准号:
1932192 - 财政年份:2019
- 资助金额:
$ 49.5万 - 项目类别:
Standard Grant
Interrogating Cadherin/Matrix Rigidity Dependent Neural Differentiation and Neuromuscular Junction Formation of Multipotent Stem Cells
探究多能干细胞的钙粘蛋白/基质刚性依赖性神经分化和神经肌肉接头形成
- 批准号:
1403491 - 财政年份:2014
- 资助金额:
$ 49.5万 - 项目类别:
Standard Grant
CAREER: Integrating Biomaterials and Biology for Control of Cell Function in 3D Matrices
职业:整合生物材料和生物学来控制 3D 矩阵中的细胞功能
- 批准号:
0847253 - 财政年份:2009
- 资助金额:
$ 49.5万 - 项目类别:
Standard Grant
相似海外基金
Queen's University Belfast - NISRA BDR Programme (Propelling Growth in Northern Ireland: Measuring and Explaining Business Productivity)
贝尔法斯特女王大学 - NISRA BDR 计划(推动北爱尔兰的增长:衡量和解释企业生产力)
- 批准号:
ES/X010732/1 - 财政年份:2023
- 资助金额:
$ 49.5万 - 项目类别:
Research Grant
PULSAR: Propelling eUropean Leadership through Synergizing Aviation Research
PULSAR:通过协同航空研究推动欧洲领导地位
- 批准号:
10050815 - 财政年份:2023
- 资助金额:
$ 49.5万 - 项目类别:
EU-Funded
Propelling eUropean Leadership through Synergizing Aviation Research
通过协同航空研究推动欧洲领导力
- 批准号:
10059284 - 财政年份:2023
- 资助金额:
$ 49.5万 - 项目类别:
EU-Funded
Bifurcation structure and collective motions of a self-propelling droplet driven by surfactant
表面活性剂驱动自推进液滴的分叉结构和集体运动
- 批准号:
21K03855 - 财政年份:2021
- 资助金额:
$ 49.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of Disposable Self-Propelling Colonoscope
一次性自走式结肠镜的研制
- 批准号:
19K20718 - 财政年份:2019
- 资助金额:
$ 49.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A billiard problem arising from self-propelling particles
由自推进粒子引起的台球问题
- 批准号:
19K03626 - 财政年份:2019
- 资助金额:
$ 49.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Total gastroenteroscopy using the self-propelling capsule endoscope (SPCE)
使用自推进式胶囊内窥镜(SPCE)进行全胃肠镜检查
- 批准号:
18K15829 - 财政年份:2018
- 资助金额:
$ 49.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
generating propelling & compelling VR content: a user-centered feasibility study
产生推进力
- 批准号:
133741 - 财政年份:2018
- 资助金额:
$ 49.5万 - 项目类别:
Feasibility Studies
Research on self-propelling and jumping aquatic animals near water surface by deformation considering muscle force
考虑肌力变形的水生动物近水面自推进跳跃研究
- 批准号:
17K06148 - 财政年份:2017
- 资助金额:
$ 49.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Crawling type ultra-thin and flexible actuator capable of propelling inside the blood vessel
可在血管内推进的爬行式超薄柔性执行器
- 批准号:
16K14194 - 财政年份:2016
- 资助金额:
$ 49.5万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research