Exciton-plasmon states in nano-morphologically controlled semiconductor nanowires: From weak coupling to quantum entanglement
纳米形态控制的半导体纳米线中的激子-等离子体激元态:从弱耦合到量子纠缠
基本信息
- 批准号:2004768
- 负责人:
- 金额:$ 53.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-technical description:When a strong interaction between light and matter occurs, new phenomena (entangled quantum states) arise, which are generally not observed in nature. This quantum entanglement can potentially be harnessed for quantum information technologies with drastically improved data acquisition and processing. In this project, the research team uses semiconductor nanowires, which are surrounded by metal nanoparticles to investigate the interaction between light (in the form of plasmons) and semiconductor (in the form of excitons). To achieve strong coupling and quantum entanglement, the morphology of this nanostructure is modified by laser processing inside a transmission electron microscope. The light-matter coupling is investigated with optical methods and electron microscopy along with theoretical modelling. This project opens new prospects for designing novel quantum materials with significant impact in the areas of quantum information and quantum science. The project fully integrates education and training of graduate and undergraduate students with an emphasis on recruitment from underrepresented groups. The training prepares the students for a wide range of careers. Outreach to the public includes contributions to local STEM programs and organized lab-tours of the electron microscopy facilities for high-school students. Technical description:Entanglement and strong coupling are the basis for quantum computing and quantum sensing. As a model system to study these quantum effects the research team is using an open cavity semiconductor nanowire-metal nanoparticle system in which excitons and plasmons can interact in regimes ranging from weak to strong coupling. Ultrafast optical spectroscopy and electron energy-loss spectroscopy are uniquely combined to study the energy transfer and many-emitter entanglement with high temporal and high spatial resolution. Laser processing of these plasmonic nanostructures inside the transmission electron microscope allows modifications of the morphology during atomic resolution imaging providing a system to achieve and to control quantum entanglement. The central thrusts in this project are to synthesize nano-morphologically controlled metal/organic/semiconductor nanowires and to study the coupling of excitons and plasmons. Both the change in the nanostructure morphology and the inserted organic modulator critically modify the coupling strength in this quantum system. The calculated dielectric response function connects the loss function obtained from the electron energy-loss spectroscopy measurements with the optical measurements. Complementary theoretical modelling provides a fundamental understanding of these light-matter interactions. The investigations of the research team open new prospects for designing novel quantum materials to exploit strong coupling and many-emitter entanglement with significant impact in the areas of quantum –information, -chemistry and -biology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性描述:当光与物质之间发生强相互作用时,就会产生新的现象(纠缠量子态),这在自然界中通常是观察不到的。这种量子纠缠可以用于量子信息技术,大大改善数据采集和处理。在这个项目中,研究小组使用半导体纳米线,它被金属纳米颗粒包围,以研究光(以等离子体的形式)和半导体(以激子的形式)之间的相互作用。为了实现强耦合和量子纠缠,这种纳米结构的形态通过透射电子显微镜内的激光加工进行修改。光-物质耦合的研究与光学方法和电子显微镜沿着与理论建模。该项目为设计在量子信息和量子科学领域具有重大影响的新型量子材料开辟了新的前景。该项目将研究生和本科生的教育和培训充分结合起来,重点是从任职人数不足的群体中征聘。培训为学生准备了广泛的职业生涯。对公众的宣传包括对当地STEM项目的贡献,以及为高中生组织电子显微镜设施的实验室参观。技术描述:纠缠和强耦合是量子计算和量子传感的基础。作为研究这些量子效应的模型系统,研究小组正在使用一个开放腔半导体纳米颗粒-金属纳米颗粒系统,其中激子和等离子体可以在从弱耦合到强耦合的范围内相互作用。超快光谱技术与电子能量损失谱技术相结合,以高的时间和空间分辨率研究了能量传递和多发射体纠缠。在透射电子显微镜内激光处理这些等离子体纳米结构允许在原子分辨率成像期间修改形态,从而提供实现和控制量子纠缠的系统。本计画的主要目的是合成奈米形貌控制的金属/有机/半导体奈米线,并研究激子与电浆子的耦合。纳米结构形态的变化和插入的有机调制器都严格地修改了该量子系统中的耦合强度。计算的介电响应函数连接从电子能量损失谱测量获得的损失函数与光学测量。互补的理论模型提供了对这些光-物质相互作用的基本理解。该研究团队的研究为设计新型量子材料开辟了新的前景,以利用强耦合和多发射器纠缠,在量子信息,化学和生物学领域产生重大影响。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Unique reflection from birefringent uncoated and gold-coated InP nanowire crystal arrays
双折射未镀膜和镀金 InP 纳米线晶体阵列的独特反射
- DOI:10.1364/oe.440891
- 发表时间:2022
- 期刊:
- 影响因子:3.8
- 作者:Tu, Chia-Wei;Kaveh, Masoud;Fränzl, Martin;Gao, Qian;Tan, Hark-Hoe;Jagadish, Chennupati;Schmitzer, Heidrun;Wagner, Hans Peter
- 通讯作者:Wagner, Hans Peter
Lasing from InP Nanowire Photonic Crystals on InP Substrate
InP 衬底上的 InP 纳米线光子晶体发出激光
- DOI:10.1002/adom.202001745
- 发表时间:2020
- 期刊:
- 影响因子:9
- 作者:Tu, Chia‐Wei;Fränzl, Martin;Gao, Qian;Tan, Hark‐Hoe;Jagadish, Chennupati;Schmitzer, Heidrun;Wagner, Hans Peter
- 通讯作者:Wagner, Hans Peter
Polarization Conversion of Light Diffracted from InP Nanowire Photonic Crystal Arrays
InP 纳米线光子晶体阵列衍射光的偏振转换
- DOI:10.1002/adom.202202342
- 发表时间:2023
- 期刊:
- 影响因子:9
- 作者:Tu, Chia‐Wei;Kaveh, Masoud;Fränzl, Martin;Gao, Qian;Tan, Hark Hoe;Jagadish, Chennupati;Schmitzer, Heidrun;Wagner, Hans Peter
- 通讯作者:Wagner, Hans Peter
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hans-Peter Wagner其他文献
Hans-Peter Wagner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hans-Peter Wagner', 18)}}的其他基金
Electron-LO-Phonon Quantum Kinetics in Wide-Gap II-VI Nanostructures with Strong Confinement
强约束宽禁带 II-VI 纳米结构中的电子-LO-声子量子动力学
- 批准号:
0305076 - 财政年份:2003
- 资助金额:
$ 53.71万 - 项目类别:
Continuing Grant
相似国自然基金
Tamm plasmon polaritons在金属与有限全介质光子晶体组成的复杂周期结构中传输特性的研究
- 批准号:11004121
- 批准年份:2010
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
带电粒子与表面/界面电子气相互作用的理论研究
- 批准号:11005058
- 批准年份:2010
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
表面等离子共振增强硅基发光研究
- 批准号:60606001
- 批准年份:2006
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Ultrafast Dephasing of Strongly Coupled Plasmon-Exciton States
强耦合等离子体激子态的超快相移
- 批准号:
2304905 - 财政年份:2023
- 资助金额:
$ 53.71万 - 项目类别:
Standard Grant
Structural determinants of activity and mechanism of cationic peptide antibiotic activity against colistin-resistant bacteria
阳离子肽抗生素对粘菌素耐药菌活性的结构决定因素和机制
- 批准号:
10733264 - 财政年份:2023
- 资助金额:
$ 53.71万 - 项目类别:
Four-dimensional Adhesion Frequency Assay for Full Profiling of Receptor-ligand Interactions on Cells
四维粘附频率测定,全面分析细胞上受体-配体相互作用
- 批准号:
10707983 - 财政年份:2022
- 资助金额:
$ 53.71万 - 项目类别:
Plasmonic sensor and field monitor for mercury
汞等离激元传感器和场监测器
- 批准号:
10686175 - 财政年份:2022
- 资助金额:
$ 53.71万 - 项目类别:
Identifying biomarker signatures of prognostic value for Multisystem Inflammatory Syndrome in Children (MIS-C)
识别儿童多系统炎症综合征 (MIS-C) 预后价值的生物标志物特征
- 批准号:
10651536 - 财政年份:2022
- 资助金额:
$ 53.71万 - 项目类别:
Building a pipeline to generate affinity reagents to phosphothreonine epitopes
建立生产磷酸苏氨酸表位亲和试剂的管道
- 批准号:
10481540 - 财政年份:2022
- 资助金额:
$ 53.71万 - 项目类别:
A novel antimicrobial resistance mechanism for Borrelia burgdorferi
伯氏疏螺旋体的新型抗菌药物耐药机制
- 批准号:
10425475 - 财政年份:2022
- 资助金额:
$ 53.71万 - 项目类别:
Structural Characterization of Coronavirus Antibodies Raised by Infection and Vaccination
感染和疫苗接种产生的冠状病毒抗体的结构表征
- 批准号:
10327994 - 财政年份:2022
- 资助金额:
$ 53.71万 - 项目类别:
Molecular Drivers of FABP-mediated Endocannabinoid Signaling for Appetite Regulation
FABP 介导的内源性大麻素信号传导食欲调节的分子驱动因素
- 批准号:
10683375 - 财政年份:2022
- 资助金额:
$ 53.71万 - 项目类别: