Topics in Kinematics and Geometrical Optics: Tire Track Geometry and Billiard Models
运动学和几何光学主题:轮胎轨迹几何和台球模型
基本信息
- 批准号:2005444
- 负责人:
- 金额:$ 34.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed research consists of two parts: models of vehicle motion and tire track geometry, and models of elastic reflection in bounded regions and geometric optics. In the first part, the investigator will study a variety of concrete problems of vehicle kinematics. Direct applications involve pursuit problems, control of tractors with many trailers, and preventing driving hazard. The same mathematical methods apply to the study of other, seemingly unrelated, applied problems, including stability of floating bodies and modeling of the Josephson effect (Nobel Prize in 1973), important in the design of quantum-mechanical circuits for quantum computers. In the second part, the investigator will study fundamental problems of ray optics and models of mechanical systems with elastic collision, such as the ideal gas. Although ray optics provides only an approximation to a more precise wave optics, this approximation is accurate enough for many applications, including laser beam shaping, trapping rays of light and storing solar energy, control of light pollution, and invisibility. Modern technology makes it possible to manufacture materials with unusual reflecting and refracting properties and to create nearly ideal mirrors of complicated shape, thus realizing geometrical optical designs in glass, metal, and plastic. Most of the suggested problems admit both theoretical and computer experimental study, in many cases the latter being the first step toward the former. The investigator will actively involve undergraduate and graduate students in his research program.The proposed research has strong connections with the theory of completely integrable systems, continuous and discrete, and it relies on a variety of methods developed in this theory since the discovery of solitons in the 1960s and, in particular, on the theory of discrete differential geometry. For example, the problem of describing cylindrical bodies that float in equilibrium in all positions is intimately related with the description of solitons of the filament equation, a completely integrable system modeling the motion of fluid and gas vortices, and the cross-sections of all known solutions to this flotation problem are buckled rings (pressurized elastica), that also solve a variational problem extensively studied in the late 19th and early 20th centuries. In general, the theory of completely integrable systems makes it possible to find explicit solutions to the differential and difference equations that arise in the models; often these solutions are given in terms of elliptic functions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
拟议的研究包括两部分:车辆运动和轮胎轨迹几何模型,以及有界区域和几何光学的弹性反射模型。在第一部分中,研究者将研究车辆运动学的各种具体问题。直接应用涉及追踪问题、对带有许多拖车的拖拉机的控制以及防止驾驶危险。同样的数学方法也适用于其他看似无关的应用问题的研究,包括浮体的稳定性和约瑟夫森效应的建模(1973 年诺贝尔奖),这对于量子计算机的量子力学电路的设计非常重要。在第二部分中,研究人员将研究射线光学的基本问题和具有弹性碰撞的机械系统模型,例如理想气体。 尽管射线光学仅提供了更精确的波动光学的近似值,但这种近似值对于许多应用来说足够准确,包括激光束整形、捕获光线和存储太阳能、控制光污染和隐形。现代技术使得制造具有不寻常的反射和折射特性的材料成为可能,并创造出近乎理想的复杂形状的镜子,从而实现玻璃、金属和塑料的几何光学设计。大多数提出的问题都允许理论和计算机实验研究,在许多情况下,后者是迈向前者的第一步。研究者将积极让本科生和研究生参与他的研究计划。所提出的研究与连续和离散的完全可积系统理论有很强的联系,并且依赖于自 20 世纪 60 年代发现孤子以来该理论中开发的各种方法,特别是离散微分几何理论。例如,描述在所有位置平衡漂浮的圆柱体的问题与细丝方程的孤子的描述密切相关,这是一个模拟流体和气体涡流运动的完全可积系统,并且该漂浮问题的所有已知解决方案的横截面都是扣环(加压弹性体),这也解决了 19 世纪末和 20 世纪初广泛研究的变分问题 几个世纪。一般来说,完全可积系统的理论使得找到模型中出现的微分方程和差分方程的显式解成为可能;这些解决方案通常以椭圆函数的形式给出。该奖项反映了 NSF 的法定使命,并且通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Remarks on Joachimsthal Integral and Poritsky Property
关于 Joachimsthal 积分和 Poritsky 性质的评论
- DOI:10.1007/s40598-021-00180-0
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Arnold, Maxim;Tabachnikov, Serge
- 通讯作者:Tabachnikov, Serge
Loewner's ``forgotten" theorem
勒纳“被遗忘”定理
- DOI:10.1007/s00283-021-10144-z
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Albers, P.
- 通讯作者:Albers, P.
Open Problems on Billiards and Geometric Optics
台球和几何光学的未决问题
- DOI:10.1007/s40598-022-00198-y
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Bialy, Misha;Fierobe, Corentin;Glutsyuk, Alexey;Levi, Mark;Plakhov, Alexander;Tabachnikov, Serge
- 通讯作者:Tabachnikov, Serge
Billiards in ellipses revisited
- DOI:10.1007/s40879-020-00426-9
- 发表时间:2020-09-09
- 期刊:
- 影响因子:0.6
- 作者:Akopyan, Arseniy;Schwartz, Richard;Tabachnikov, Serge
- 通讯作者:Tabachnikov, Serge
Symplectically convex and symplectically star-shaped curves: a variational problem
辛凸曲线和辛星形曲线:变分问题
- DOI:10.1007/s11784-022-00931-2
- 发表时间:2022
- 期刊:
- 影响因子:1.8
- 作者:Albers, Peter;Tabachnikov, Serge
- 通讯作者:Tabachnikov, Serge
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Serge Tabachnikov其他文献
Two Variations on the Periscope Theorem
- DOI:
10.1134/s1560354720010037 - 发表时间:
2020-02-20 - 期刊:
- 影响因子:0.800
- 作者:
Serge Tabachnikov - 通讯作者:
Serge Tabachnikov
Polynomials as Polygons
- DOI:
10.1007/s00283-016-9681-y - 发表时间:
2017-01-27 - 期刊:
- 影响因子:0.400
- 作者:
Serge Tabachnikov - 通讯作者:
Serge Tabachnikov
Going in Circles: Variations on the Money-Coutts Theorem
- DOI:
10.1023/a:1005204813246 - 发表时间:
2000-01-01 - 期刊:
- 影响因子:0.500
- 作者:
Serge Tabachnikov - 通讯作者:
Serge Tabachnikov
Configuration Spaces of Plane Polygons and a sub-Riemannian Approach to the Equitangent Problem
- DOI:
10.1007/s10883-015-9269-4 - 发表时间:
2015-02-24 - 期刊:
- 影响因子:0.800
- 作者:
Jesús Jerónimo-Castro;Serge Tabachnikov - 通讯作者:
Serge Tabachnikov
Polar Bear or Penguin? Musings on Earth Cartography and Chebyshev Nets
- DOI:
10.1007/s00283-020-10013-1 - 发表时间:
2020-10-19 - 期刊:
- 影响因子:0.400
- 作者:
Boris Khesin;Serge Tabachnikov - 通讯作者:
Serge Tabachnikov
Serge Tabachnikov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Serge Tabachnikov', 18)}}的其他基金
Conference: Finite Dimensional Integrable Systems 2023
会议:有限维可积系统 2023
- 批准号:
2308659 - 财政年份:2023
- 资助金额:
$ 34.8万 - 项目类别:
Standard Grant
Conference: Finite Dimensional Integrable Systems 2022
会议:有限维可积系统 2022
- 批准号:
2221910 - 财政年份:2022
- 资助金额:
$ 34.8万 - 项目类别:
Standard Grant
Finite Dimensional Integrable Systems 2017
有限维可积系统 2017
- 批准号:
1707468 - 财政年份:2017
- 资助金额:
$ 34.8万 - 项目类别:
Standard Grant
Topics in Geometrical Dynamics and Applications
几何动力学及其应用主题
- 批准号:
1510055 - 财政年份:2015
- 资助金额:
$ 34.8万 - 项目类别:
Standard Grant
Finite Dimensional Integrable Systems 2015, July 13-17, 2015
有限维可积系统 2015,2015 年 7 月 13-17 日
- 批准号:
1464771 - 财政年份:2015
- 资助金额:
$ 34.8万 - 项目类别:
Standard Grant
Finite Dimensional Integrable Systems 2013
有限维可积系统 2013
- 批准号:
1301538 - 财政年份:2013
- 资助金额:
$ 34.8万 - 项目类别:
Standard Grant
Topics in Dynamics, Differential Topology and Differential Geometry
动力学、微分拓扑和微分几何主题
- 批准号:
0555803 - 财政年份:2006
- 资助金额:
$ 34.8万 - 项目类别:
Standard Grant
Geometric and Topological Study of Systems with Impact and Related Topics
具有影响力的系统的几何和拓扑研究及相关主题
- 批准号:
0244720 - 财政年份:2003
- 资助金额:
$ 34.8万 - 项目类别:
Standard Grant
Topics in Differential Dynamics and Differential Topology
微分动力学和微分拓扑主题
- 批准号:
9802849 - 财政年份:1998
- 资助金额:
$ 34.8万 - 项目类别:
Standard Grant
相似海外基金
Towards preservation of the natural knee: State-of-the-art approaches to understand the kinematics and tissue mechanics of human menisci in vivo.
保护自然膝盖:了解体内人体半月板运动学和组织力学的最先进方法。
- 批准号:
EP/Y002415/1 - 财政年份:2024
- 资助金额:
$ 34.8万 - 项目类别:
Research Grant
Constructing Valid, Equitable, and Flexible Kinematics and Dynamics Assessment Scales with Evidence-Centered Design
通过以证据为中心的设计构建有效、公平、灵活的运动学和动力学评估量表
- 批准号:
2235595 - 财政年份:2023
- 资助金额:
$ 34.8万 - 项目类别:
Standard Grant
Postdoctoral Fellowship: AAPF: All Shook Up: Understanding the Chemistry, Dynamics, and Kinematics of the Diffuse Interstellar Medium
博士后奖学金:AAPF:一切都震惊了:了解弥漫星际介质的化学、动力学和运动学
- 批准号:
2303902 - 财政年份:2023
- 资助金额:
$ 34.8万 - 项目类别:
Fellowship Award
Kinematics and ionization state of the circumgalactic medium around extremely-metal poor galaxies investigated with wide-field integral field spectroscopy
用宽场积分场光谱研究极贫金属星系周围环绕星系介质的运动学和电离态
- 批准号:
23KJ2148 - 财政年份:2023
- 资助金额:
$ 34.8万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Constructing Valid, Equitable, and Flexible Kinematics and Dynamics Assessment Scales with Evidence-Centered Design
通过以证据为中心的设计构建有效、公平、灵活的运动学和动力学评估量表
- 批准号:
2235518 - 财政年份:2023
- 资助金额:
$ 34.8万 - 项目类别:
Standard Grant
Elucidation of the kinematics and structure in the sacroiliac joint in cause of the sacroiliac joint dysfunction
骶髂关节运动学和结构的阐明导致骶髂关节功能障碍
- 批准号:
23K16682 - 财政年份:2023
- 资助金额:
$ 34.8万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Constructing Valid, Equitable, and Flexible Kinematics and Dynamics Assessment Scales with Evidence-Centered Design
通过以证据为中心的设计构建有效、公平、灵活的运动学和动力学评估量表
- 批准号:
2235681 - 财政年份:2023
- 资助金额:
$ 34.8万 - 项目类别:
Standard Grant
Understanding the central kinematics of massive star clusters: Evidence for massive black holes?
了解大质量星团的中心运动学:大质量黑洞的证据?
- 批准号:
2668528 - 财政年份:2022
- 资助金额:
$ 34.8万 - 项目类别:
Studentship
The use of behavioural biometrics, 3D kinematics and infrared thermography to assess affective and biological states in livestock
使用行为生物识别、3D 运动学和红外热成像技术评估牲畜的情感和生物状态
- 批准号:
RGPIN-2021-02890 - 财政年份:2022
- 资助金额:
$ 34.8万 - 项目类别:
Discovery Grants Program - Individual
In Vivo Quantification of Bone, Ligament, and Soft Tissue Kinematics in Low to High Knee Flexion Tasks for the Development of an Anatomically-Accurate Knee Joint Model
对低至高膝关节屈曲任务中的骨、韧带和软组织运动学进行体内量化,以开发解剖学精确的膝关节模型
- 批准号:
547370-2020 - 财政年份:2022
- 资助金额:
$ 34.8万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral