Conference: Finite Dimensional Integrable Systems 2023
会议:有限维可积系统 2023
基本信息
- 批准号:2308659
- 负责人:
- 金额:$ 1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposal seeks to support participation of US-based mathematicians, especially those in the early stages of career, at the international conference "Finite Dimensional Integrable Systems 2023, to be held at the University of Antwerp, Belgium, on August 7-11, 2023. The conference will bring together leading experts, early-career researchers, and graduate students in this far-reaching and fast-growing area of research. The conference web site is https://www.uantwerpen.be/nl/personeel/sonja-hohloch/private-webpage/conference-workshop/fdis2023/The conference focuses on recent progress in the study of integrable systems with a finite number of degrees of freedom, a subfield of the theory of completely integrable systems that grew out of the now classical work of Lagrange, Jacobi, Kovalevskaya, Noether, Poincare, and others. In the second half of 20th century, KAM theory, due to Kolmogorov, Arnold and Moser, revealed new perspectives on integrability problems, stimulating progress in the area and the development of powerful techniques that bridge mathematics and physics. These have resulted in the discovery of new kinds of integrable systems, broader applications in physics and geometry, and solutions to long-standing open questions. The conference will survey recent progress in the field, present new directions of research and applications, and foster collaborations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该提案旨在支持美国数学家,特别是那些处于职业生涯早期阶段的数学家,参加将于2023年8月7日至11日在比利时安特卫普大学举行的国际会议“有限维可积系统2023”。会议将汇集领先的专家,早期职业研究人员和研究生在这个影响深远和快速增长的研究领域。该会议的网站是https://www.uantwerpen.be/nl/personeel/sonja-hohloch/private-webpage/conference-workshop/fdis2023/The会议的重点是最近的进展,在研究可积系统与有限数量的自由度,一个子领域的理论完全可积系统,成长出现在的经典工作的拉格朗日,雅可比,Kovalevskaya,诺特,庞加莱,和其他人。世纪后半叶,Kolmogorov,Arnold和Moser等人提出的KAM理论,为可积性问题的研究提供了新的视角,促进了可积性研究的发展,促进了数学与物理之间的桥梁技术的发展。 这些都导致了新类型的可积系统的发现,在物理学和几何学中更广泛的应用,以及长期悬而未决的问题的解决方案。该会议将调查该领域的最新进展,提出研究和应用的新方向,并促进合作。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Serge Tabachnikov其他文献
Two Variations on the Periscope Theorem
- DOI:
10.1134/s1560354720010037 - 发表时间:
2020-02-20 - 期刊:
- 影响因子:0.800
- 作者:
Serge Tabachnikov - 通讯作者:
Serge Tabachnikov
Polynomials as Polygons
- DOI:
10.1007/s00283-016-9681-y - 发表时间:
2017-01-27 - 期刊:
- 影响因子:0.400
- 作者:
Serge Tabachnikov - 通讯作者:
Serge Tabachnikov
Going in Circles: Variations on the Money-Coutts Theorem
- DOI:
10.1023/a:1005204813246 - 发表时间:
2000-01-01 - 期刊:
- 影响因子:0.500
- 作者:
Serge Tabachnikov - 通讯作者:
Serge Tabachnikov
Configuration Spaces of Plane Polygons and a sub-Riemannian Approach to the Equitangent Problem
- DOI:
10.1007/s10883-015-9269-4 - 发表时间:
2015-02-24 - 期刊:
- 影响因子:0.800
- 作者:
Jesús Jerónimo-Castro;Serge Tabachnikov - 通讯作者:
Serge Tabachnikov
Polar Bear or Penguin? Musings on Earth Cartography and Chebyshev Nets
- DOI:
10.1007/s00283-020-10013-1 - 发表时间:
2020-10-19 - 期刊:
- 影响因子:0.400
- 作者:
Boris Khesin;Serge Tabachnikov - 通讯作者:
Serge Tabachnikov
Serge Tabachnikov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Serge Tabachnikov', 18)}}的其他基金
Conference: Finite Dimensional Integrable Systems 2022
会议:有限维可积系统 2022
- 批准号:
2221910 - 财政年份:2022
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Topics in Kinematics and Geometrical Optics: Tire Track Geometry and Billiard Models
运动学和几何光学主题:轮胎轨迹几何和台球模型
- 批准号:
2005444 - 财政年份:2020
- 资助金额:
$ 1万 - 项目类别:
Continuing Grant
Finite Dimensional Integrable Systems 2017
有限维可积系统 2017
- 批准号:
1707468 - 财政年份:2017
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Topics in Geometrical Dynamics and Applications
几何动力学及其应用主题
- 批准号:
1510055 - 财政年份:2015
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Finite Dimensional Integrable Systems 2015, July 13-17, 2015
有限维可积系统 2015,2015 年 7 月 13-17 日
- 批准号:
1464771 - 财政年份:2015
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Finite Dimensional Integrable Systems 2013
有限维可积系统 2013
- 批准号:
1301538 - 财政年份:2013
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Topics in Dynamics, Differential Topology and Differential Geometry
动力学、微分拓扑和微分几何主题
- 批准号:
0555803 - 财政年份:2006
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Geometric and Topological Study of Systems with Impact and Related Topics
具有影响力的系统的几何和拓扑研究及相关主题
- 批准号:
0244720 - 财政年份:2003
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Topics in Differential Dynamics and Differential Topology
微分动力学和微分拓扑主题
- 批准号:
9802849 - 财政年份:1998
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
相似国自然基金
Finite-time Lyapunov 函数和耦合系统的稳定性分析
- 批准号:11701533
- 批准年份:2017
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Further extension of the distribution theory of covariance matrices on finite dimensional field
有限维域上协方差矩阵分布理论的进一步推广
- 批准号:
23K11016 - 财政年份:2023
- 资助金额:
$ 1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference: Finite Dimensional Integrable Systems 2022
会议:有限维可积系统 2022
- 批准号:
2221910 - 财政年份:2022
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
New horizons in operator algebras: finite-dimensional approximations and quantized function theory
算子代数的新视野:有限维近似和量化函数理论
- 批准号:
RGPIN-2022-03600 - 财政年份:2022
- 资助金额:
$ 1万 - 项目类别:
Discovery Grants Program - Individual
Residually finite-dimensional operator algebras: peaking phenomena and finite-dimensional approximations
剩余有限维算子代数:峰值现象和有限维近似
- 批准号:
570214-2022 - 财政年份:2022
- 资助金额:
$ 1万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Control of Fluid-Structure Interactions: Finite Dimensional Strategies for Flutter/Turbulence Suppression
流固耦合控制:颤振/湍流抑制的有限维策略
- 批准号:
2205508 - 财政年份:2022
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Finite dimensional integrable systems and differential geometry
有限维可积系统和微分几何
- 批准号:
DP210100951 - 财政年份:2022
- 资助金额:
$ 1万 - 项目类别:
Discovery Projects
Combinatorics of finite-dimensional algebras, with applications to scattering amplitudes
有限维代数的组合及其在散射振幅中的应用
- 批准号:
RGPIN-2022-03960 - 财政年份:2022
- 资助金额:
$ 1万 - 项目类别:
Discovery Grants Program - Individual
The C* - Envelope of Residually Finite-Dimensional Operator Algebras
C* - 剩余有限维算子代数的包络
- 批准号:
556558-2020 - 财政年份:2020
- 资助金额:
$ 1万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Studies on holomorphic mappings on the homogeneous unit ball in finite or infinite dimensional complex Banach spaces
有限或无限维复Banach空间中齐次单位球的全纯映射研究
- 批准号:
20K03640 - 财政年份:2020
- 资助金额:
$ 1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Statistical inference in finite mixture of regressions and mixture-of-experts models in high-dimensional spaces, and varying coefficient finite mixture of regression models
高维空间中回归和专家混合模型的有限混合的统计推断,以及回归模型的变系数有限混合
- 批准号:
RGPIN-2015-03805 - 财政年份:2019
- 资助金额:
$ 1万 - 项目类别:
Discovery Grants Program - Individual