Topics in Dynamics, Differential Topology and Differential Geometry
动力学、微分拓扑和微分几何主题
基本信息
- 批准号:0555803
- 负责人:
- 金额:$ 11.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-07-01 至 2009-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal concerns a variety of concrete research problems from the theory of dynamical systems, differential topology and differential geometry, mostly motivated by physical or engineering applications. They include estimating below the number of periodic motions in systems with elastic collisions (billiards, ideal gas models), rigidity of integrable billiards, motion of an electric charge in magnetic field (in particular, the magnetic analog of Hilbert's fourth problem), tire track geometry and flotation problems, bihamiltonian approach to the filament equation in hydrodynamics and its discrete versions, complexity of the motion planning problem in topological robotics, non-degenerate immersions and embeddings of manifolds (the latter are closely related with H-principle of differential topology and with the topology of configuration spaces of smooth manifolds).There are two themes, unifying the diverse problems considered in the proposal. The first is the interplay between continuous and discrete (for example, evolution of curves describing vortices in ideal fluid versus similar evolution of polygons). The second unifying theme is the interplay between rigidity and flexibility of remarkable dynamical or geometrical phenomena (for example, is a round cylinder the only uniform cylindrical solid - a log - that floats in equilibrium in all positions? The answer depends on the density of the log.)
这个建议涉及各种具体的研究问题,从动力系统理论,微分拓扑和微分几何,主要是出于物理或工程应用。他们包括估计以下的数量周期运动的系统与弹性碰撞(台球,理想气体模型),可积台球的刚性,磁场中电荷的运动(特别是希尔伯特第四问题的磁模拟),轮胎轨迹几何和漂浮问题,流体力学中细丝方程的双哈密顿方法及其离散版本,拓扑机器人中运动规划问题的复杂性,流形的非退化浸入和嵌入(后者与微分拓扑的H-原理和光滑流形的构形空间的拓扑密切相关)。第一个是连续和离散之间的相互作用(例如,描述理想流体中旋涡的曲线的演变与多边形的类似演变)。第二个统一的主题是显著的动力学或几何现象的刚性和柔性之间的相互作用(例如,圆柱体是唯一均匀的圆柱形固体-原木-在所有位置都平衡漂浮吗?答案取决于原木的密度。)
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Serge Tabachnikov其他文献
Two Variations on the Periscope Theorem
- DOI:
10.1134/s1560354720010037 - 发表时间:
2020-02-20 - 期刊:
- 影响因子:0.800
- 作者:
Serge Tabachnikov - 通讯作者:
Serge Tabachnikov
Polynomials as Polygons
- DOI:
10.1007/s00283-016-9681-y - 发表时间:
2017-01-27 - 期刊:
- 影响因子:0.400
- 作者:
Serge Tabachnikov - 通讯作者:
Serge Tabachnikov
Going in Circles: Variations on the Money-Coutts Theorem
- DOI:
10.1023/a:1005204813246 - 发表时间:
2000-01-01 - 期刊:
- 影响因子:0.500
- 作者:
Serge Tabachnikov - 通讯作者:
Serge Tabachnikov
Configuration Spaces of Plane Polygons and a sub-Riemannian Approach to the Equitangent Problem
- DOI:
10.1007/s10883-015-9269-4 - 发表时间:
2015-02-24 - 期刊:
- 影响因子:0.800
- 作者:
Jesús Jerónimo-Castro;Serge Tabachnikov - 通讯作者:
Serge Tabachnikov
Polar Bear or Penguin? Musings on Earth Cartography and Chebyshev Nets
- DOI:
10.1007/s00283-020-10013-1 - 发表时间:
2020-10-19 - 期刊:
- 影响因子:0.400
- 作者:
Boris Khesin;Serge Tabachnikov - 通讯作者:
Serge Tabachnikov
Serge Tabachnikov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Serge Tabachnikov', 18)}}的其他基金
Conference: Finite Dimensional Integrable Systems 2023
会议:有限维可积系统 2023
- 批准号:
2308659 - 财政年份:2023
- 资助金额:
$ 11.5万 - 项目类别:
Standard Grant
Conference: Finite Dimensional Integrable Systems 2022
会议:有限维可积系统 2022
- 批准号:
2221910 - 财政年份:2022
- 资助金额:
$ 11.5万 - 项目类别:
Standard Grant
Topics in Kinematics and Geometrical Optics: Tire Track Geometry and Billiard Models
运动学和几何光学主题:轮胎轨迹几何和台球模型
- 批准号:
2005444 - 财政年份:2020
- 资助金额:
$ 11.5万 - 项目类别:
Continuing Grant
Finite Dimensional Integrable Systems 2017
有限维可积系统 2017
- 批准号:
1707468 - 财政年份:2017
- 资助金额:
$ 11.5万 - 项目类别:
Standard Grant
Topics in Geometrical Dynamics and Applications
几何动力学及其应用主题
- 批准号:
1510055 - 财政年份:2015
- 资助金额:
$ 11.5万 - 项目类别:
Standard Grant
Finite Dimensional Integrable Systems 2015, July 13-17, 2015
有限维可积系统 2015,2015 年 7 月 13-17 日
- 批准号:
1464771 - 财政年份:2015
- 资助金额:
$ 11.5万 - 项目类别:
Standard Grant
Finite Dimensional Integrable Systems 2013
有限维可积系统 2013
- 批准号:
1301538 - 财政年份:2013
- 资助金额:
$ 11.5万 - 项目类别:
Standard Grant
Geometric and Topological Study of Systems with Impact and Related Topics
具有影响力的系统的几何和拓扑研究及相关主题
- 批准号:
0244720 - 财政年份:2003
- 资助金额:
$ 11.5万 - 项目类别:
Standard Grant
Topics in Differential Dynamics and Differential Topology
微分动力学和微分拓扑主题
- 批准号:
9802849 - 财政年份:1998
- 资助金额:
$ 11.5万 - 项目类别:
Standard Grant
相似国自然基金
β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Partial differential equation: Schrodinger operator and long-time dynamics
偏微分方程:薛定谔算子和长期动力学
- 批准号:
FT230100588 - 财政年份:2024
- 资助金额:
$ 11.5万 - 项目类别:
ARC Future Fellowships
Learning Ecosystem Dynamics using Neural Ordinary Differential Equations
使用神经常微分方程学习生态系统动力学
- 批准号:
23K14274 - 财政年份:2023
- 资助金额:
$ 11.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Multi-soliton Dynamics for Dispersive Partial Differential Equations
色散偏微分方程的多孤子动力学
- 批准号:
2247290 - 财政年份:2023
- 资助金额:
$ 11.5万 - 项目类别:
Standard Grant
CAREER: Nonlocal partial differential equations in collective dynamics and fluid flow
职业:集体动力学和流体流动中的非局部偏微分方程
- 批准号:
2238219 - 财政年份:2023
- 资助金额:
$ 11.5万 - 项目类别:
Continuing Grant
Dynamics of Partial Differential Equations: Topological Implications for Stability and Analysis in Higher Spatial Dimensions
偏微分方程的动力学:更高空间维度稳定性和分析的拓扑含义
- 批准号:
2205434 - 财政年份:2022
- 资助金额:
$ 11.5万 - 项目类别:
Standard Grant
Global Dynamics of Delay Differential Systems Modelling Nonlinear Feedbacks in Spatiotemporally Varying Environments
时空变化环境中非线性反馈建模的时滞微分系统的全局动力学
- 批准号:
RGPIN-2019-06698 - 财政年份:2022
- 资助金额:
$ 11.5万 - 项目类别:
Discovery Grants Program - Individual
Population dynamics modeling via differential equations
通过微分方程进行种群动态建模
- 批准号:
572190-2022 - 财政年份:2022
- 资助金额:
$ 11.5万 - 项目类别:
University Undergraduate Student Research Awards
Collaborative Research: Nonlinear Dynamics and Spectral Analysis in Dispersive Partial Differential Equations
合作研究:色散偏微分方程中的非线性动力学和谱分析
- 批准号:
2055130 - 财政年份:2021
- 资助金额:
$ 11.5万 - 项目类别:
Standard Grant
Global Dynamics of Delay Differential Systems Modelling Nonlinear Feedbacks in Spatiotemporally Varying Environments
时空变化环境中非线性反馈建模的时滞微分系统的全局动力学
- 批准号:
RGPIN-2019-06698 - 财政年份:2021
- 资助金额:
$ 11.5万 - 项目类别:
Discovery Grants Program - Individual
Analysis of Nonlinear Partial Differential Equations in Free Boundary Fluid Dynamics, Mathematical Biology, and Kinetic Theory
自由边界流体动力学、数学生物学和运动理论中的非线性偏微分方程分析
- 批准号:
2055271 - 财政年份:2021
- 资助金额:
$ 11.5万 - 项目类别:
Standard Grant