Topics in Differential Dynamics and Differential Topology
微分动力学和微分拓扑主题
基本信息
- 批准号:9802849
- 负责人:
- 金额:$ 6.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-06-01 至 2001-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project concerns two topics: the geometry and dynamics of billiard-like dynamical systems, and the topology and geometry of Legendrian knots and curves in contact 3-dimensional manifolds. The former includes the study of the classical Birkhoff billiards, dual (or outer) billiards, and projective billiards. The techniques include symplectic topology, KAM theory, Aubry-Mather theory, integral geometry, and symbolic dynamics. The latter includes applications of "quantum" topology to Legendrian and transverse knots and links, study of the recently introduced contact homology rings and their applications, and applications of Sturm theory and the theory of generating functions to the global geometry of Legendrian curves. The motivation for the study of billiards is two-fold. First of all, mathematical billiards are intimately related to geometrical optics, and progress in the study of billiards may have practical applications in optics. Secondly, billiards provide a very good model in the theory of dynamical systems, and many developments in various areas of dynamical systems have been stimulated by problems from the theory of mathematical billiards. The theory of Legendrian curves belongs to the intersection of two very active research areas: symplectic topology and knot theory. Both have deep connections with theoretical physics: the former, with classical mechanics; the latter, with quantum physics. The Legendrian knot theory provides a good testing ground for symplectic topology and knot theory, and progress in the former will stimulate new developments in these fundamental theories.
该项目涉及两个主题:类台球动力系统的几何和动力学,以及接触三维流形中Legendrian结点和曲线的拓扑和几何。前者包括对经典伯克霍夫台球、对偶(或外)台球和投影台球的研究。这些技术包括辛拓扑、KAM理论、奥布里-马瑟理论、积分几何和符号动力学。后者包括“量子”拓扑在Legendrian和横向结和链路中的应用,最近引入的接触同调环及其应用的研究,以及Sturm理论和生成函数理论在Legendrian曲线整体几何中的应用。研究台球的动机有两个方面。首先,数学台球与几何光学密切相关,台球研究的进展可能在光学上有实际应用。其次,台球为动力系统理论提供了一个很好的模型,数学台球理论中的问题刺激了动力系统各个领域的许多发展。Legendrian曲线理论属于两个非常活跃的研究领域的交叉:辛拓扑和结理论。两者都与理论物理有着深刻的联系:前者与经典力学有关;后者与量子物理学有关。Legendrian结理论为辛拓扑和结理论提供了一个很好的试验场,而辛拓扑和结理论的进展将刺激这些基础理论的新发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Serge Tabachnikov其他文献
Two Variations on the Periscope Theorem
- DOI:
10.1134/s1560354720010037 - 发表时间:
2020-02-20 - 期刊:
- 影响因子:0.800
- 作者:
Serge Tabachnikov - 通讯作者:
Serge Tabachnikov
Polynomials as Polygons
- DOI:
10.1007/s00283-016-9681-y - 发表时间:
2017-01-27 - 期刊:
- 影响因子:0.400
- 作者:
Serge Tabachnikov - 通讯作者:
Serge Tabachnikov
Going in Circles: Variations on the Money-Coutts Theorem
- DOI:
10.1023/a:1005204813246 - 发表时间:
2000-01-01 - 期刊:
- 影响因子:0.500
- 作者:
Serge Tabachnikov - 通讯作者:
Serge Tabachnikov
Configuration Spaces of Plane Polygons and a sub-Riemannian Approach to the Equitangent Problem
- DOI:
10.1007/s10883-015-9269-4 - 发表时间:
2015-02-24 - 期刊:
- 影响因子:0.800
- 作者:
Jesús Jerónimo-Castro;Serge Tabachnikov - 通讯作者:
Serge Tabachnikov
Polar Bear or Penguin? Musings on Earth Cartography and Chebyshev Nets
- DOI:
10.1007/s00283-020-10013-1 - 发表时间:
2020-10-19 - 期刊:
- 影响因子:0.400
- 作者:
Boris Khesin;Serge Tabachnikov - 通讯作者:
Serge Tabachnikov
Serge Tabachnikov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Serge Tabachnikov', 18)}}的其他基金
Conference: Finite Dimensional Integrable Systems 2023
会议:有限维可积系统 2023
- 批准号:
2308659 - 财政年份:2023
- 资助金额:
$ 6.5万 - 项目类别:
Standard Grant
Conference: Finite Dimensional Integrable Systems 2022
会议:有限维可积系统 2022
- 批准号:
2221910 - 财政年份:2022
- 资助金额:
$ 6.5万 - 项目类别:
Standard Grant
Topics in Kinematics and Geometrical Optics: Tire Track Geometry and Billiard Models
运动学和几何光学主题:轮胎轨迹几何和台球模型
- 批准号:
2005444 - 财政年份:2020
- 资助金额:
$ 6.5万 - 项目类别:
Continuing Grant
Finite Dimensional Integrable Systems 2017
有限维可积系统 2017
- 批准号:
1707468 - 财政年份:2017
- 资助金额:
$ 6.5万 - 项目类别:
Standard Grant
Topics in Geometrical Dynamics and Applications
几何动力学及其应用主题
- 批准号:
1510055 - 财政年份:2015
- 资助金额:
$ 6.5万 - 项目类别:
Standard Grant
Finite Dimensional Integrable Systems 2015, July 13-17, 2015
有限维可积系统 2015,2015 年 7 月 13-17 日
- 批准号:
1464771 - 财政年份:2015
- 资助金额:
$ 6.5万 - 项目类别:
Standard Grant
Finite Dimensional Integrable Systems 2013
有限维可积系统 2013
- 批准号:
1301538 - 财政年份:2013
- 资助金额:
$ 6.5万 - 项目类别:
Standard Grant
Topics in Dynamics, Differential Topology and Differential Geometry
动力学、微分拓扑和微分几何主题
- 批准号:
0555803 - 财政年份:2006
- 资助金额:
$ 6.5万 - 项目类别:
Standard Grant
Geometric and Topological Study of Systems with Impact and Related Topics
具有影响力的系统的几何和拓扑研究及相关主题
- 批准号:
0244720 - 财政年份:2003
- 资助金额:
$ 6.5万 - 项目类别:
Standard Grant
相似海外基金
Partial differential equation: Schrodinger operator and long-time dynamics
偏微分方程:薛定谔算子和长期动力学
- 批准号:
FT230100588 - 财政年份:2024
- 资助金额:
$ 6.5万 - 项目类别:
ARC Future Fellowships
Learning Ecosystem Dynamics using Neural Ordinary Differential Equations
使用神经常微分方程学习生态系统动力学
- 批准号:
23K14274 - 财政年份:2023
- 资助金额:
$ 6.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Multi-soliton Dynamics for Dispersive Partial Differential Equations
色散偏微分方程的多孤子动力学
- 批准号:
2247290 - 财政年份:2023
- 资助金额:
$ 6.5万 - 项目类别:
Standard Grant
CAREER: Nonlocal partial differential equations in collective dynamics and fluid flow
职业:集体动力学和流体流动中的非局部偏微分方程
- 批准号:
2238219 - 财政年份:2023
- 资助金额:
$ 6.5万 - 项目类别:
Continuing Grant
Dynamics of Partial Differential Equations: Topological Implications for Stability and Analysis in Higher Spatial Dimensions
偏微分方程的动力学:更高空间维度稳定性和分析的拓扑含义
- 批准号:
2205434 - 财政年份:2022
- 资助金额:
$ 6.5万 - 项目类别:
Standard Grant
Global Dynamics of Delay Differential Systems Modelling Nonlinear Feedbacks in Spatiotemporally Varying Environments
时空变化环境中非线性反馈建模的时滞微分系统的全局动力学
- 批准号:
RGPIN-2019-06698 - 财政年份:2022
- 资助金额:
$ 6.5万 - 项目类别:
Discovery Grants Program - Individual
Population dynamics modeling via differential equations
通过微分方程进行种群动态建模
- 批准号:
572190-2022 - 财政年份:2022
- 资助金额:
$ 6.5万 - 项目类别:
University Undergraduate Student Research Awards
Collaborative Research: Nonlinear Dynamics and Spectral Analysis in Dispersive Partial Differential Equations
合作研究:色散偏微分方程中的非线性动力学和谱分析
- 批准号:
2055130 - 财政年份:2021
- 资助金额:
$ 6.5万 - 项目类别:
Standard Grant
Global Dynamics of Delay Differential Systems Modelling Nonlinear Feedbacks in Spatiotemporally Varying Environments
时空变化环境中非线性反馈建模的时滞微分系统的全局动力学
- 批准号:
RGPIN-2019-06698 - 财政年份:2021
- 资助金额:
$ 6.5万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Beyond differential expression: quantifying transcriptional dynamics and testing for adaptive value of transcriptomic responses at low temperature
职业:超越差异表达:量化转录动态并测试低温下转录组反应的适应性价值
- 批准号:
2045263 - 财政年份:2021
- 资助金额:
$ 6.5万 - 项目类别:
Continuing Grant