RI: Small: Domain-robust object detection through shape and context
RI:小:通过形状和上下文进行领域稳健的对象检测
基本信息
- 批准号:2006885
- 负责人:
- 金额:$ 46.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Computer vision has made great advancements in object recognition and detection, but performance drops significantly when the data used at training and deployment time are very different. This is problematic because in many situations, it may be infeasible to retrain the models on a large example set in the domain of interest. For example, artificial intelligence (AI) tools may be developed in one country or region, using that region’s training data, and exported to regions with limited resources to collect new data and retrain models. Unfortunately, the visual environment in the user region may be different from the developer region: some vehicles in India look different from common vehicles in the US; houses often feature bricks on the US East Coast but less frequently on the West Coast; environmental factors (e.g., foliage and smog) may cause models to behave differently. Being robust to domain shifts is important for interpretability and trust when computer vision systems are employed in practice. This project leverages the observation that while the pixels of captured objects change when these objects are shown in different domains (e.g., photographs vs paintings), the overall shape of the objects remains the same. Further, the set of objects that co-occur with the object of interest is also relatively consistent across domains. This project develops new visual representations that capture two global cues: shape and context. While numerous domain adaptations and generalization techniques exist, they have overlooked global cues that can potentially be more robust to domain shifts, based on preliminary experiments. The first proposed representation adapts the medial axis transform (MAT) into a hierarchical, learnable, convolutional representation. MAT computes the "skeleton" of an object, and a representation is developed using a dense feature map to ensure there is enough information for the convolutional network to capture, as well as to build robustness to small shifts. Second, context is represented through graphs containing functionally or semantically related objects, and ambient cues (such as co-occurring text or speech) to improve the model's ability to recognize objects in novel modalities. Techniques for making weakly-supervised techniques more robust to domain shifts are explored, as a way of capturing non-semantic context. Next, these global representations are combined with standard appearance-based ones and are adapted to novel domains or made domain-invariant through domain generalization techniques. The domain robustness of the resulting representations is tested in a variety of domain shift scenarios, including photorealistic and artistic datasets, different capture conditions, and controllable shift scenarios (e.g., blurring and masking), for both object recognition and detection. Code, any artificially created situations (data), clear protocols for how to train models for existing techniques, and detailed benchmarking results (quantitative and qualitative) will be released to ensure reproducibility.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
计算机视觉在目标识别和检测方面取得了很大的进步,但当训练和部署时使用的数据差异很大时,性能会显著下降。这是有问题的,因为在许多情况下,在感兴趣的领域的大样本集上重新训练模型可能是不可行的。例如,人工智能(AI)工具可能在一个国家或地区开发,使用该地区的训练数据,并导出到资源有限的地区,以收集新数据并重新训练模型。不幸的是,用户地区的视觉环境可能与开发者地区不同:印度的一些车辆看起来与美国的普通车辆不同;在美国东海岸,房屋通常以砖块为特色,但在西海岸则不那么常见;环境因素(例如,树叶和烟雾)可能导致模型表现不同。在实际应用中,对领域偏移的鲁棒性对计算机视觉系统的可解释性和信任度至关重要。这个项目利用了这样一种观察,即当这些物体在不同的领域(例如,照片与绘画)中显示时,所捕获的物体的像素会发生变化,但物体的整体形状保持不变。此外,与感兴趣的对象共同出现的对象集在各个领域也相对一致。这个项目开发了新的视觉表现,捕捉了两个全球线索:形状和环境。虽然存在许多领域适应和泛化技术,但根据初步实验,它们忽略了可能对领域转移更稳健的全局线索。第一种提出的表示将中间轴变换(MAT)转换成一种分层的、可学习的卷积表示。MAT计算对象的“骨架”,并使用密集的特征映射开发表示,以确保有足够的信息供卷积网络捕获,并建立对小位移的鲁棒性。其次,通过包含功能或语义相关对象和环境线索(如共同出现的文本或语音)的图形来表示上下文,以提高模型以新模式识别对象的能力。研究了使弱监督技术对领域转移更健壮的技术,作为捕获非语义上下文的一种方法。然后,将这些全局表示与标准的基于外观的表示结合起来,并适应新的领域或通过领域泛化技术使其成为领域不变性。结果表示的域鲁棒性在各种域移位场景中进行了测试,包括真实感和艺术数据集,不同的捕获条件和可控的移位场景(例如,模糊和掩蔽),用于对象识别和检测。代码,任何人为创建的情况(数据),关于如何训练现有技术模型的明确协议,以及详细的基准测试结果(定量和定性)将被发布,以确保再现性。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Contrastive View Design Strategies to Enhance Robustness to Domain Shifts in Downstream Object Detection
- DOI:10.48550/arxiv.2212.04613
- 发表时间:2022-12
- 期刊:
- 影响因子:0
- 作者:Kyle Buettner;Adriana Kovashka
- 通讯作者:Kyle Buettner;Adriana Kovashka
The Role of Shape for Domain Generalization on Sparsely-Textured Images
- DOI:10.1109/cvprw56347.2022.00560
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:N. Nazari;Adriana Kovashka
- 通讯作者:N. Nazari;Adriana Kovashka
Towards Shape-regularized Learning for Mitigating Texture Bias in CNNs
- DOI:10.1145/3591106.3592231
- 发表时间:2023-06
- 期刊:
- 影响因子:0
- 作者:Harsh Sinha;Adriana Kovashka
- 通讯作者:Harsh Sinha;Adriana Kovashka
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adriana Kovashka其他文献
Detecting Sexually Provocative Images
检测性挑逗图像
- DOI:
10.1109/wacv.2017.79 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Debashis Ganguly;Mohammad H. Mofrad;Adriana Kovashka - 通讯作者:
Adriana Kovashka
Syntharch: Interactive Image Search with Attribute-Conditioned Synthesis
Syntharch:具有属性条件合成的交互式图像搜索
- DOI:
10.1109/cvprw50498.2020.00093 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Zac Yu;Adriana Kovashka - 通讯作者:
Adriana Kovashka
Inferring Visual Persuasion via Body Language, Setting, and Deep Features
通过肢体语言、场景和深层特征推断视觉说服力
- DOI:
10.1109/cvprw.2016.102 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Xinyue Huang;Adriana Kovashka - 通讯作者:
Adriana Kovashka
Dorian: Music Recommendation Strategies using Social Network Mining
Dorian:使用社交网络挖掘的音乐推荐策略
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Adriana Kovashka - 通讯作者:
Adriana Kovashka
Interactive image search with attributes
- DOI:
- 发表时间:
2014-08 - 期刊:
- 影响因子:0
- 作者:
Adriana Kovashka - 通讯作者:
Adriana Kovashka
Adriana Kovashka的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adriana Kovashka', 18)}}的其他基金
RI: Small: Multilingual Supervision for Object Detection under Geographic Domain and Concept Shifts
RI:小型:地理领域和概念转变下目标检测的多语言监督
- 批准号:
2329992 - 财政年份:2023
- 资助金额:
$ 46.18万 - 项目类别:
Standard Grant
Travel: Group Travel Grant for the Doctoral Consortium of the IEEE Conference on Computer Vision and Pattern Recognition
旅行:为 IEEE 计算机视觉和模式识别会议博士联盟提供团体旅行补助金
- 批准号:
2222346 - 财政年份:2022
- 资助金额:
$ 46.18万 - 项目类别:
Standard Grant
CAREER: Natural Narratives and Multimodal Context as Weak Supervision for Learning Object Categories
职业:自然叙事和多模态上下文作为学习对象类别的弱监督
- 批准号:
2046853 - 财政年份:2021
- 资助金额:
$ 46.18万 - 项目类别:
Continuing Grant
Group Travel Grant for the Doctoral Consortium of the IEEE Conference on Computer Vision and Pattern Recognition
为 IEEE 计算机视觉和模式识别会议博士联盟提供团体旅行补助金
- 批准号:
1742714 - 财政年份:2017
- 资助金额:
$ 46.18万 - 项目类别:
Standard Grant
RI: Small: Modeling Vividness and Symbolism for Decoding Visual Rhetoric
RI:小:建模生动性和象征意义以解码视觉修辞
- 批准号:
1718262 - 财政年份:2017
- 资助金额:
$ 46.18万 - 项目类别:
Standard Grant
CRII: RI: Automatically Understanding the Messages and Goals of Visual Media
CRII:RI:自动理解视觉媒体的信息和目标
- 批准号:
1566270 - 财政年份:2016
- 资助金额:
$ 46.18万 - 项目类别:
Standard Grant
Group Travel Grant for the Doctoral Consortium of the IEEE Conference on Computer Vision and Pattern Recognition
为 IEEE 计算机视觉和模式识别会议博士联盟提供团体旅行补助金
- 批准号:
1630019 - 财政年份:2016
- 资助金额:
$ 46.18万 - 项目类别:
Standard Grant
Group Travel Grant for the Doctoral Consortium of the IEEE Conference on Computer Vision and Pattern Recognition
为 IEEE 计算机视觉和模式识别会议博士联盟提供团体旅行补助金
- 批准号:
1529929 - 财政年份:2015
- 资助金额:
$ 46.18万 - 项目类别:
Standard Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
SHF: Small: Domain-Specific FPGAs to Accelerate Unrolled DNNs with Fine-Grained Unstructured Sparsity and Mixed Precision
SHF:小型:特定领域 FPGA 加速具有细粒度非结构化稀疏性和混合精度的展开 DNN
- 批准号:
2303626 - 财政年份:2023
- 资助金额:
$ 46.18万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Systematic Threat Characterization and Prevention in Open-Domain Dialog Systems
SaTC:核心:小型:开放域对话系统中的系统威胁特征描述和预防
- 批准号:
2231002 - 财政年份:2023
- 资助金额:
$ 46.18万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Mitigating Threats of Physical-Domain Signal Injections on Security, Reliability, and Safety of Sensing and Control Systems
SaTC:核心:小型:减轻物理域信号注入对传感和控制系统的安全性、可靠性和安全性的威胁
- 批准号:
2231682 - 财政年份:2023
- 资助金额:
$ 46.18万 - 项目类别:
Continuing Grant
RI: Small: Multilingual Supervision for Object Detection under Geographic Domain and Concept Shifts
RI:小型:地理领域和概念转变下目标检测的多语言监督
- 批准号:
2329992 - 财政年份:2023
- 资助金额:
$ 46.18万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Towards Deceptive and Domain-Specific Cyber-Physical Honeypots
SaTC:核心:小型:走向欺骗性和特定领域的网络物理蜜罐
- 批准号:
2231651 - 财政年份:2023
- 资助金额:
$ 46.18万 - 项目类别:
Standard Grant
Small protein-domain affinity reagents and D-proteins
小蛋白结构域亲和试剂和 D 蛋白
- 批准号:
RGPIN-2017-06195 - 财政年份:2022
- 资助金额:
$ 46.18万 - 项目类别:
Discovery Grants Program - Individual
Small protein-domain affinity reagents and D-proteins
小蛋白结构域亲和试剂和 D 蛋白
- 批准号:
RGPIN-2017-06195 - 财政年份:2021
- 资助金额:
$ 46.18万 - 项目类别:
Discovery Grants Program - Individual
Small protein-domain affinity reagents and D-proteins
小蛋白结构域亲和试剂和 D 蛋白
- 批准号:
RGPIN-2017-06195 - 财政年份:2020
- 资助金额:
$ 46.18万 - 项目类别:
Discovery Grants Program - Individual
Discovery of small molecules that specifically target the transmembrane C99 domain of the Amyloid Precursor Protein.
发现特异性靶向淀粉样前体蛋白跨膜 C99 结构域的小分子。
- 批准号:
10066062 - 财政年份:2020
- 资助金额:
$ 46.18万 - 项目类别:
III: Small: Go Beyond Short-term Dependency and Homogeneity: A General-Purpose Transformer Recipe for Multi-Domain Heterogeneous Sequential Data Analysis
III:小:超越短期依赖性和同质性:用于多域异构顺序数据分析的通用 Transformer 配方
- 批准号:
2008334 - 财政年份:2020
- 资助金额:
$ 46.18万 - 项目类别:
Continuing Grant