School on Electron-Phonon Physics from First Principles
从第一原理开始的电子声子物理学院
基本信息
- 批准号:2007638
- 负责人:
- 金额:$ 11.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARYThis award supports a summer school activity to train graduate students, postdoctoral scholars, faculty members, and research scientists in modern approaches to predictive calculations for materials and particularly their electronic properties. The school is currently planned to take place June 14 to June 20, 2021 at the University of Texas - Austin. The organizers have flexible backup plans including conversion to a virtual summer school, to compensate for Covid-19 related contingencies. The focus of this summer school will be on calculating how electrons interact with oscillations of atoms in the crystal, or phonons starting from fundamental understanding of electrons and atoms, the building blocks of materials. The electron-phonon interaction plays an important in determining the temperature dependence of many electronic and optical properties of solids, and plays a central role in technologically important phenomena, from charge and heat transport to superconductivity and light-driven phase transitions. With rapid progress in materials design and data-driven materials discovery there is a growing need for more advanced computational methods that start from the atomic level together with their implementation in software to describe complex functional properties of materials and materials systems with predictive accuracy. This summer school will bring together expertise from across the nation and the world to introduce participants to advanced first principles methods for calculating electron-phonon physics and related materials properties, including lectures on the quantum mechanical theory of systems of many particles, software implementations, and hands-on training sessions. The school will be followed by a hackathon event guided by experts from the Texas Advanced Computing Center, and devoted to creating and maintaining sustainable cyberinfrastructure. There is currently no specialized training available in this area; this school fills a significant gap in the education of the next generation of physicists, chemists, materials scientists, and engineers.This school will contribute to developing a globally competitive STEM workforce by exposing participants to advanced techniques in computational materials modelling and design. By training participants into best practices in scientific computing and software development, the school will contribute to educating scientists and engineers that will go on to build tomorrow’s cyberinfrastructure. This school will also foster partnerships between academia and industry by delivering training in techniques that can be employed in an industrial setting, and by doing so it will contribute to increasing the economic competitiveness of the United States. Participation of underrepresented minorities, women, and persons with disabilities will be encouraged and prioritizedin order to increase diversity in STEM. An event dedicated to diversity and inclusion will be heldduring the school.TECHNICAL SUMMARYThis award supports a summer school activity to train graduate students, postdoctoral scholars, faculty members, and research scientists in modern approaches to predictive calculations for materials and particularly their electronic properties. The school is currently planned to take place June 14 to June 20, 2021 at the University of Texas - Austin. The organizers have flexible backup plans including conversion to a virtual summer school, to compensate for Covid-19 related contingencies. This school will introduce researchers to state-of-the art techniques for predictive first principles calculations of electronic, optical, and transport properties of materials at finite temperature. By the end of the school participants will be able to compute electron-phonon couplings, band structures including zero-point quantum fluctuations and temperature effects, optical properties including phonon-assisted quantum processes, critical temperature and superconducting gap of phonon mediated superconductors, electron and hole mobilities in semiconductors, the resistivity of metals, and polaronic properties. These properties are essential for designing the materials that will underpin future technology, including solar cells, displays, touch screens, superconducting cables, portable electronics, batteries, and quantum computers. There is currently no specialized training available in this area; this school fills a significant gap in the education of the next generation of physicists, chemists, materials scientists, and engineers.This school will contribute to developing a globally competitive STEM workforce by exposing participants to advanced techniques in computational materials modelling and design. By training participants into best practices in scientific computing and software development, the school will contribute to educating scientists and engineers that will go on to build tomorrow’s cyberinfrastructure. The school will also foster partnership between academia and industry by delivering training in techniques that can be employed in an industrial setting, and by doing so it will contribute to increasing the economic competitiveness of the United States. Participation of underrepresented minorities, women, and persons with disabilities will be encouraged and prioritized in order to increase diversity in STEM. An event dedicated to diversity and inclusion will be held during the school.This award by the Division of Materials Research within the NSF Directorate of Mathematical and Physical Sciences is jointly supported by the NSF Office of Advanced Cyberinfrastructure in the Directorate of Computer and Information Science and Engineering.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要这一奖项支持暑期学校的活动,以培训研究生,博士后学者,教职员工和研究科学家的现代方法,以预测材料,尤其是其电子特性。该学校目前计划于6月14日至2021年6月20日在德克萨斯大学奥斯汀分校举行。组织者制定了灵活的备份计划,包括转换为虚拟暑期学校,以弥补与19个相关意外情况的补偿。这位暑期学校的重点将是计算电子产品如何与晶体中原子的振荡相互作用,或者从对电子和原子的基本了解开始的材料基础开始。电子 - 光子相互作用在确定固体的许多电子和光学特性的温度依赖性方面起着重要作用,并且在从电荷和热传输到超导性和轻度驱动相变的技术重要现象中起着核心作用。随着材料设计和数据驱动材料发现的快速进展,对更先进的计算方法的需求越来越大,该方法从原子层开始,以及它们在软件中的实现,以描述具有预测精度的材料和材料系统的复杂功能性能。今年暑期学校将汇集全国和世界各地的专业知识,向参与者介绍用于计算电子物理和相关材料属性的先进第一原理方法,包括有关许多粒子,软件实施和动手培训的量子机械理论的讲座。该学校将由德克萨斯州高级计算中心的专家指导的黑客马拉松活动,并部署到创建和维护可持续的网络基础设施。目前,该领域尚无专门培训。这所学校填补了下一代物理学家,化学家,材料科学家和工程师的教育差距。这所学校将通过使参与者接触到计算材料建模和设计中的先进技术,从而有助于发展全球竞争性的STEM劳动力。通过培训参与者在科学计算和软件开发领域的最佳实践中,学校将有助于教育将继续建立明天的网络基础设施的科学家和工程师。这所学校还将通过提供可以在工业环境中使用的技术进行培训来促进学术界和行业之间的伙伴关系,这将有助于提高美国的经济竞争力。将鼓励代表性不足的少数民族,妇女和残疾人的参与,并优先考虑增加STEM多样性的命令。专门针对多样性和包容性的活动将举行学校。技术摘要颁奖典礼支持暑期学校的活动,以培训研究生,博士后学校,教职员工和研究科学家的现代方法,以实现预测性计算材料,尤其是其电子物业。该学校目前计划于6月14日至2021年6月20日在德克萨斯大学奥斯汀分校举行。组织者制定了灵活的备份计划,包括转换为虚拟暑期学校,以弥补与19个相关意外情况的补偿。这所学校将向研究人员介绍最先进的技术,以进行预测的第一原理计算材料在有限温度下的电子,光学和传输性能。到学校的结束时,参与者将能够计算电子 - 量子耦合,包括零点量子波动和温度效应在内的带状结构,包括声子辅助量子过程,临界温度和超导差距,临界温度和超导差距,介导的超导体超导体的超导体,电子和孔在半度性属性中的电子和孔的动机,具有抗物特性的抗抗性和极性。这些特性对于设计将来将来的技术(包括太阳能电池,显示,触摸屏,超导电缆,便携式电子,电池和量子计算机)的材料至关重要。目前,该领域尚无专门培训。这所学校填补了下一代物理学家,化学家,材料科学家和工程师的教育差距。这所学校将通过使参与者接触到计算材料建模和设计中的先进技术,从而有助于发展全球竞争性的STEM劳动力。通过培训参与者在科学计算和软件开发领域的最佳实践中,学校将有助于教育将继续建立明天的网络基础设施的科学家和工程师。学校还将通过提供可以在工业环境中使用的技术进行培训来促进学术界和行业之间的伙伴关系,这将有助于提高美国的经济竞争力。为了增加STEM的多样性,将鼓励和优先级的代表性不足的少数民族,妇女和残疾人的参与。 NSF数学和物理科学局内的材料研究部将在学校内颁发的材料研究部颁发奖项,由NSF高级网络基础设施办公室共同支持计算机和信息科学和工程局,这一奖项由NSF授予NSF的范围进行了评估,这反映了NSF的法定企业,该奖项均由NSF的法定企业进行了评估,该奖项由NSF高级网络基础设施办公室共同支持。 标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Feliciano Giustino其他文献
<span class="small-caps">SternheimerGW</span>: A program for calculating <math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e1442" altimg="si24.svg" class="math"><mrow><mi>G</mi><mi>W</mi></mrow></math> quasiparticle band structures and spectral functions without unoccupied states
- DOI:
10.1016/j.cpc.2019.07.019 - 发表时间:
2020-02-01 - 期刊:
- 影响因子:
- 作者:
Martin Schlipf;Henry Lambert;Nourdine Zibouche;Feliciano Giustino - 通讯作者:
Feliciano Giustino
Feliciano Giustino的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Feliciano Giustino', 18)}}的其他基金
Frameworks: An Interoperable Software Ecosystem for Many-Body Electronic Structure Calculations
框架:用于多体电子结构计算的可互操作软件生态系统
- 批准号:
2103991 - 财政年份:2021
- 资助金额:
$ 11.79万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Quasi-Direct Semiconductors
合作研究:DMREF:准直接半导体
- 批准号:
2119555 - 财政年份:2021
- 资助金额:
$ 11.79万 - 项目类别:
Standard Grant
Rational design of solid-state semiconductor-sensitized solar cells: from materials modelling to device fabrication
固态半导体敏化太阳能电池的合理设计:从材料建模到器件制造
- 批准号:
EP/J009857/1 - 财政年份:2012
- 资助金额:
$ 11.79万 - 项目类别:
Research Grant
相似国自然基金
基于声子调谐稀土近红外二区比率荧光探针的理性设计及发光物理
- 批准号:12374374
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
应用时间分辨太赫兹圆二色光谱学方法探索手性声子的物理特性及瞬态光激发行为
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
堆垛型声子晶体中的高阶拓扑现象及其物理机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
应用时间分辨太赫兹圆二色光谱学方法探索手性声子的物理特性及瞬态光激发行为
- 批准号:12274091
- 批准年份:2022
- 资助金额:55.00 万元
- 项目类别:面上项目
堆垛型声子晶体中的高阶拓扑现象及其物理机制研究
- 批准号:12204417
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of Si-based Dirac electron superlattice and its thermoelectric devices based on phonon and electron trapsport physics
基于声子和电子陷阱物理的硅基狄拉克电子超晶格及其热电器件的研制
- 批准号:
19H00853 - 财政年份:2019
- 资助金额:
$ 11.79万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Empirical research of electron-phonon interaction on transition-metal oxides
过渡金属氧化物电子-声子相互作用的实证研究
- 批准号:
16K05604 - 财政年份:2016
- 资助金额:
$ 11.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Independent control of phonon and electron transports based on the interface physics by using heteronanostrucutre interfaces
利用异质纳米结构界面基于界面物理的声子和电子传输的独立控制
- 批准号:
15K13276 - 财政年份:2015
- 资助金额:
$ 11.79万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Quantum behavior of coherent optical phonons
相干光学声子的量子行为
- 批准号:
17540305 - 财政年份:2005
- 资助金额:
$ 11.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Effects of phonon, orbital and disorder on the Mott transition
声子、轨道和无序对莫特跃迁的影响
- 批准号:
14540334 - 财政年份:2002
- 资助金额:
$ 11.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)