CIF: Small: Data Analysis in Higher-Order Complex Networks
CIF:小型:高阶复杂网络中的数据分析
基本信息
- 批准号:2008555
- 负责人:
- 金额:$ 48.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Communication, biological, and social networks are a key part of our everyday lives. Examples of systems that can be modeled as networks include the wireless infrastructure providing us with cellular communications and the online social platforms allowing us to stay in contact with each other. In these networks, agents, such as wireless stations or people, are modeled as nodes, and interactions between these agents (such as data transmissions or friendships) take place over the edges of the network. An inherent limitation of this method is the assumption that global network dynamics emerge exclusively from pairwise interactions between agents. Nevertheless, there exists a wealth of data associated with systems where pairwise interactions are insufficient modeling elements. This project will depart from the analysis of pairwise networks and develop the theory needed to learn from multi-relational connections. Specifically, this project will result in methods and algorithms to infer these complex connections from data and to leverage the inferred relational structures to better understand the systems that are being represented. Moreover, the project will achieve a real and lasting impact on students at Rice University via inclusive mentoring, novel teaching, and exciting research opportunities for the undergraduate and graduate populations. Research dissemination will be promoted through the organization of tutorials and special sessions. Finally, with the objective of broadening the participation of Hispanics in computing, a series of bilingual network-related workshops will be delivered at local high-schools.The primary research goal of this project is to develop a principled theory to process and learn from data defined on higher-order networks. More precisely, the data is modeled as signals defined on structural topological elements of simplicial complexes, which are a specific subclass of hypergraphs. This enables the implementation of concepts from algebraic topology to define in these structures notions from signal processing, such as frequency and filtering, and from deep learning, such as convolutional neural networks and deep generative models. In order to achieve the primary research goal, three thrusts are proposed, where the common denominator is the integration of signal processing and deep learning techniques with topological data domains. First, a (non higher-order) graph will be considered as the data domain but the thrust will focus on the case where the data of interest is located on the edges (such as flows of mass, energy, or information) as opposed to the nodes of the graph. The second thrust will derive relations between the spectral features of the Hodge Laplacian and topological characteristics of simplicial complexes to lay out the fundamentals of signal processing and deep learning for higher-order networks. The aforementioned directions leverage the structure of graphs and higher-order networks to better process data defined on them. However, a prerequisite for this is to have access to the network in the first place. Oftentimes, one only gets to observe data in some portions of the higher-order structure and wants to infer the rest of the structure to ultimately use it for processing. Accordingly, novel tools for higher-order network topology inference will be developed in the third research thrust. In the longer run, the investigator seeks to establish a fertile data science framework grounded on the combination of signal processing and machine learning with topological notions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
通信、生物和社交网络是我们日常生活的重要组成部分。可以被建模为网络的系统的例子包括为我们提供蜂窝通信的无线基础设施和允许我们彼此保持联系的在线社交平台。在这些网络中,代理(如无线站或人)被建模为节点,这些代理之间的交互(如数据传输或友谊)发生在网络的边缘。这种方法的一个固有的局限性是假设全球网络动态出现完全从代理之间的成对交互。然而,存在大量与成对相互作用不足以建模元素的系统相关的数据。这个项目将从成对网络的分析出发,发展从多关系连接中学习所需的理论。具体来说,该项目将产生从数据中推断这些复杂连接的方法和算法,并利用推断的关系结构来更好地理解所表示的系统。此外,该项目将通过为本科生和研究生提供包容性的指导、新颖的教学和令人兴奋的研究机会,对莱斯大学的学生产生真实的和持久的影响。将通过组织辅导和特别会议促进研究的传播。最后,为了扩大西班牙裔在计算方面的参与,将在当地高中举办一系列与网络相关的双语讲习班,该项目的主要研究目标是开发一种原则性的理论来处理和学习高阶网络上定义的数据。更准确地说,数据被建模为定义在单纯复形的结构拓扑元素上的信号,单纯复形是超图的一个特定子类。这使得来自代数拓扑的概念的实现能够在这些结构中定义来自信号处理的概念,例如频率和滤波,以及来自深度学习的概念,例如卷积神经网络和深度生成模型。为了实现主要研究目标,提出了三个重点,其中共同点是将信号处理和深度学习技术与拓扑数据域相结合。首先,(非高阶)图将被视为数据域,但重点将集中在感兴趣的数据位于边缘(如质量流,能量流或信息流)而不是图的节点上的情况。第二个重点将推导出Hodge Laplacian的谱特征与单纯复形的拓扑特征之间的关系,以奠定高阶网络的信号处理和深度学习的基础。上述方向利用图和高阶网络的结构来更好地处理定义在其上的数据。然而,这的先决条件是首先能够访问网络。通常情况下,人们只能观察高阶结构的某些部分中的数据,并希望推断结构的其余部分,以最终将其用于处理。因此,高阶网络拓扑推理的新工具将在第三个研究重点中开发。从长远来看,该研究者旨在建立一个基于信号处理和机器学习与拓扑概念相结合的丰富的数据科学框架。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Dual Graph Shift Operator: Identifying the Support of the Frequency Domain
对偶图移位算子:识别频域的支持
- DOI:10.1007/s00041-021-09850-1
- 发表时间:2021
- 期刊:
- 影响因子:1.2
- 作者:Leus, Geert;Segarra, Santiago;Ribeiro, Alejandro;Marques, Antonio G.
- 通讯作者:Marques, Antonio G.
Blind Inference of Eigenvector Centrality Rankings
- DOI:10.1109/tsp.2021.3093765
- 发表时间:2020-08
- 期刊:
- 影响因子:5.4
- 作者:T. Roddenberry;Santiago Segarra
- 通讯作者:T. Roddenberry;Santiago Segarra
Graphon-Aided Joint Estimation of Multiple Graphs
图辅助多图联合估计
- DOI:10.1109/icassp43922.2022.9746332
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Navarro, Madeline;Segarra, Santiago
- 通讯作者:Segarra, Santiago
Windowed Fourier Analysis for Signal Processing on Graph Bundles
图束信号处理的加窗傅里叶分析
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Roddenberry, T.M.;Segarra, S.
- 通讯作者:Segarra, S.
Network Topology Change-Point Detection from Graph Signals with Prior Spectral Signatures
- DOI:10.1109/icassp39728.2021.9413857
- 发表时间:2020-10
- 期刊:
- 影响因子:0
- 作者:Chiraag Kaushik;T. Roddenberry;Santiago Segarra
- 通讯作者:Chiraag Kaushik;T. Roddenberry;Santiago Segarra
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Santiago Segarra其他文献
Hierarchical Quasi-Clustering Methods for Asymmetric Networks
非对称网络的分层准聚类方法
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
G. Carlsson;F. Mémoli;Alejandro Ribeiro;Santiago Segarra - 通讯作者:
Santiago Segarra
Spectral Partitioning of Time-varying Networks with Unobserved Edges
具有不可观察边缘的时变网络的谱划分
- DOI:
10.1109/icassp.2019.8682815 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Michael T. Schaub;Santiago Segarra;Hoi - 通讯作者:
Hoi
Graph-signal reconstruction and blind deconvolution for diffused sparse inputs
扩散稀疏输入的图信号重建和盲反卷积
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
D. Ramírez;A. Marques;Santiago Segarra - 通讯作者:
Santiago Segarra
Blind identification of graph filters with sparse inputs
稀疏输入图过滤器的盲识别
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Santiago Segarra;G. Mateos;A. Marques;Alejandro Ribeiro - 通讯作者:
Alejandro Ribeiro
Space-shift sampling of graph signals
图信号的空间平移采样
- DOI:
10.1109/icassp.2016.7472900 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Santiago Segarra;A. Marques;G. Leus;Alejandro Ribeiro - 通讯作者:
Alejandro Ribeiro
Santiago Segarra的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Santiago Segarra', 18)}}的其他基金
CAREER: Learning from Data on Structured Complexes: Products, Bundles, and Limits
职业:从结构化复合体的数据中学习:乘积、捆绑和限制
- 批准号:
2340481 - 财政年份:2024
- 资助金额:
$ 48.81万 - 项目类别:
Continuing Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
CIF: Small: Learning Low-Dimensional Representations with Heteroscedastic Data Sources
CIF:小:使用异方差数据源学习低维表示
- 批准号:
2331590 - 财政年份:2024
- 资助金额:
$ 48.81万 - 项目类别:
Standard Grant
CIF: Small: Efficient and Secure Federated Structure Learning from Bad Data
CIF:小型:高效、安全的联邦结构从不良数据中学习
- 批准号:
2341359 - 财政年份:2024
- 资助金额:
$ 48.81万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Versatile Data Synchronization: Novel Codes and Algorithms for Practical Applications
合作研究:CIF:小型:多功能数据同步:实际应用的新颖代码和算法
- 批准号:
2312872 - 财政年份:2023
- 资助金额:
$ 48.81万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Versatile Data Synchronization: Novel Codes and Algorithms for Practical Applications
合作研究:CIF:小型:多功能数据同步:实际应用的新颖代码和算法
- 批准号:
2312871 - 财政年份:2023
- 资助金额:
$ 48.81万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Versatile Data Synchronization: Novel Codes and Algorithms for Practical Applications
合作研究:CIF:小型:多功能数据同步:实际应用的新颖代码和算法
- 批准号:
2312873 - 财政年份:2023
- 资助金额:
$ 48.81万 - 项目类别:
Standard Grant
CIF: Small: Foundations of Decentralized Data Science: Optimizing Utility, Privacy and Communication Efficiency
CIF:小型:去中心化数据科学的基础:优化实用性、隐私和通信效率
- 批准号:
2213223 - 财政年份:2022
- 资助金额:
$ 48.81万 - 项目类别:
Standard Grant
CIF: Small: Load Balancing for Cloud Networks: Data Locality Issues and Modern Algorithms
CIF:小型:云网络的负载平衡:数据局部性问题和现代算法
- 批准号:
2113027 - 财政年份:2021
- 资助金额:
$ 48.81万 - 项目类别:
Standard Grant
CIF: Small: Collaborative Research: Graphical Modeling of Multivariate Functional Data
CIF:小型:协作研究:多元函数数据的图形建模
- 批准号:
2102227 - 财政年份:2021
- 资助金额:
$ 48.81万 - 项目类别:
Standard Grant
CIF: Small: Statistically Optimal Subsampling for Big Data and Rare Events Data
CIF:小:大数据和稀有事件数据的统计最佳子采样
- 批准号:
2105571 - 财政年份:2021
- 资助金额:
$ 48.81万 - 项目类别:
Standard Grant
CIF: Small: Collaborative Research: Graphical Modeling of Multivariate Functional Data
CIF:小型:协作研究:多元函数数据的图形建模
- 批准号:
2102243 - 财政年份:2021
- 资助金额:
$ 48.81万 - 项目类别:
Standard Grant