CIF: Small: Collaborative Research: Graphical Modeling of Multivariate Functional Data

CIF:小型:协作研究:多元函数数据的图形建模

基本信息

  • 批准号:
    2102227
  • 负责人:
  • 金额:
    $ 24.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Multivariate functional data, where continuous observations are sampled from multiple processes, are emerging in a wide range of scientific applications. A central problem in analyzing multivariate functional data is to understand the interdependency among the functions. This can be formulated as the problem of graphical modeling of multivariate functions. The majority of existing solutions, however, focus on random variables, and extension to random functions is far from trivial. This project is developing a class of novel statistical methods and associated theory for functional graphical modeling. This research is timely in that it responds to the growing demand for functional data analysis, and is expected to advance numerous biological and medical research areas, including the analyses of brain connectivity networks, gene regulatory networks, and protein-protein interaction networks. This project is studying three sets of problems: (1) nonparametric functional graphical modeling, which relaxes the Gaussian distribution or the linear structural assumptions, and avoids the curse of dimensionality and works for large graphs; (2) functional directed acyclic graphical modeling, which combines directed graph and functional graph, and offers a tractable solution for inferring directional dependency among multivariate functions; and (3) conditional and dynamic functional graphical modeling, which models graph that varies continuously with one or multiple external variables such as time. At the heart of its development is linear-operator-based statistical learning, which provides a highly flexible and efficient platform to handle massive and complex functional data. The accompanying estimation algorithms and asymptotic theory also make useful additions to the toolbox of multiple fields, including functional data analysis, network and graphical modeling, and statistical machine learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Multivariate functional data, where continuous observations are sampled from multiple processes, are emerging in a wide range of scientific applications. A central problem in analyzing multivariate functional data is to understand the interdependency among the functions. This can be formulated as the problem of graphical modeling of multivariate functions. The majority of existing solutions, however, focus on random variables, and extension to random functions is far from trivial. This project is developing a class of novel statistical methods and associated theory for functional graphical modeling. This research is timely in that it responds to the growing demand for functional data analysis, and is expected to advance numerous biological and medical research areas, including the analyses of brain connectivity networks, gene regulatory networks, and protein-protein interaction networks. This project is studying three sets of problems: (1) nonparametric functional graphical modeling, which relaxes the Gaussian distribution or the linear structural assumptions, and avoids the curse of dimensionality and works for large graphs; (2) functional directed acyclic graphical modeling, which combines directed graph and functional graph, and offers a tractable solution for inferring directional dependency among multivariate functions; and (3) conditional and dynamic functional graphical modeling, which models graph that varies continuously with one or multiple external variables such as time. At the heart of its development is linear-operator-based statistical learning, which provides a highly flexible and efficient platform to handle massive and complex functional data. The accompanying estimation algorithms and asymptotic theory also make useful additions to the toolbox of multiple fields, including functional data analysis, network and graphical modeling, and statistical machine learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Orthogonalized Kernel Debiased Machine Learning for Multimodal Data Analysis
Sliced Inverse Regression in Metric Spaces
  • DOI:
    10.5705/ss.202022.0097
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Joni Virta;Kuang‐Yao Lee;Lexin Li
  • 通讯作者:
    Joni Virta;Kuang‐Yao Lee;Lexin Li
Statistical Inference for High-Dimensional Vector Autoregression with Measurement Error
  • DOI:
    10.5705/ss.202021.0151
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Xiang Lyu;Jian Kang;Lexin Li
  • 通讯作者:
    Xiang Lyu;Jian Kang;Lexin Li
Sequential pathway inference for multimodal neuroimaging analysis
  • DOI:
    10.1002/sta4.433
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Lexin Li;C. Shi;Tengfei Guo;W. Jagust
  • 通讯作者:
    Lexin Li;C. Shi;Tengfei Guo;W. Jagust
Nonparametric Functional Graphical Modeling Through Functional Additive Regression Operator
  • DOI:
    10.1080/01621459.2021.2006667
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Kuang‐Yao Lee;Lexin Li;Bing Li;Hongyu Zhao
  • 通讯作者:
    Kuang‐Yao Lee;Lexin Li;Bing Li;Hongyu Zhao
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lexin Li其他文献

Sparse Low-rank Tensor Response Regression
稀疏低秩张量响应回归
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    W. Sun;Lexin Li
  • 通讯作者:
    Lexin Li
On post dimension reduction statistical inference
  • DOI:
    10.1214/15-AOS1859
  • 发表时间:
  • 期刊:
  • 影响因子:
  • 作者:
    Kyongwon Kim;Bing Li;Zhou Yu;Lexin Li
  • 通讯作者:
    Lexin Li
Constrained regression model selection
  • DOI:
    10.1016/j.jspi.2008.02.006
  • 发表时间:
    2008-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Lexin Li;Chih-Ling Tsai
  • 通讯作者:
    Chih-Ling Tsai
High-dimensional Response Growth Curve Modeling for Longitudinal Neuroimaging Analysis
用于纵向神经影像分析的高维响应生长曲线建模
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lu Wang;Xiang Lyu;Zhengwu Zhang;Lexin Li
  • 通讯作者:
    Lexin Li
Scalable Object Detection Using Deep but Lightweight CNN with Features Fusion
使用深度轻量级 CNN 和特征融合进行可扩展目标检测
  • DOI:
    10.1007/978-3-319-71607-7_33
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qiaosong Chen;Shangsheng Feng;Pei Xu;Lexin Li;Ling Zheng;Jin Wang;Xin Deng
  • 通讯作者:
    Xin Deng

Lexin Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lexin Li', 18)}}的其他基金

I-Corps: Development of machine learning technology for matching under a variety of realistic and largescale preference structures
I-Corps:开发用于在各种现实和大规模偏好结构下进行匹配的机器学习技术
  • 批准号:
    2133869
  • 财政年份:
    2021
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Standard Grant
Collaborative Research: Tensor Envelope Model - A New Approach for Regressions with Tensor Data
合作研究:张量包络模型 - 张量数据回归的新方法
  • 批准号:
    1613137
  • 财政年份:
    2016
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Standard Grant
New Dimension Reduction Approaches for Modern Scientific Data with High Dimensionality and Complex Structure
高维复杂结构现代科学数据降维新方法
  • 批准号:
    1106668
  • 财政年份:
    2011
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Standard Grant
Sufficient Dimension Reduction for Missing, Censored, and Correlated Data
针对缺失、删失和相关数据进行充分降维
  • 批准号:
    0706919
  • 财政年份:
    2007
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Standard Grant

相似国自然基金

昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
  • 批准号:
    32000033
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
  • 批准号:
    31972324
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
  • 批准号:
    81900988
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
  • 批准号:
    31802058
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
  • 批准号:
    31870821
  • 批准年份:
    2018
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
  • 批准号:
    31772128
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
  • 批准号:
    81704176
  • 批准年份:
    2017
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
  • 批准号:
    91640114
  • 批准年份:
    2016
  • 资助金额:
    85.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343599
  • 财政年份:
    2024
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343600
  • 财政年份:
    2024
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
  • 批准号:
    2326622
  • 财政年份:
    2024
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
  • 批准号:
    2326621
  • 财政年份:
    2024
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Versatile Data Synchronization: Novel Codes and Algorithms for Practical Applications
合作研究:CIF:小型:多功能数据同步:实际应用的新颖代码和算法
  • 批准号:
    2312872
  • 财政年份:
    2023
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Maximizing Coding Gain in Coded Computing
协作研究:CIF:小型:最大化编码计算中的编码增益
  • 批准号:
    2327509
  • 财政年份:
    2023
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Designing Plotkin Transform Codes via Machine Learning
协作研究:CIF:小型:通过机器学习设计 Plotkin 转换代码
  • 批准号:
    2312753
  • 财政年份:
    2023
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Theory for Learning Lossless and Lossy Coding
协作研究:CIF:小型:学习无损和有损编码的理论
  • 批准号:
    2324396
  • 财政年份:
    2023
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Hypergraph Signal Processing and Networks via t-Product Decompositions
合作研究:CIF:小型:通过 t 产品分解的超图信号处理和网络
  • 批准号:
    2230161
  • 财政年份:
    2023
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: New Theory, Algorithms and Applications for Large-Scale Bilevel Optimization
合作研究:CIF:小型:大规模双层优化的新理论、算法和应用
  • 批准号:
    2311274
  • 财政年份:
    2023
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了