Collaborative Research: SHF: Small: Decentralized Edge Computing Platform for Privacy-Preserving Mobile Crowdsensing

合作研究:SHF:小型:用于保护隐私的移动群体感知的去中心化边缘计算平台

基本信息

  • 批准号:
    2008837
  • 负责人:
  • 金额:
    $ 19.01万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-15 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Mobile crowdsensing leverages mobile devices (e.g., smartphones and wearables) to collect sensing data from users and measure spatiotemporal phenomena (e.g., air quality and traffic speed). Yet, existing crowdsensing solutions are mainly built on a cloud-centric approach that raises significant security and privacy challenges. For example, accurate and real-time situational awareness of flooding and wildfires is important for incident commanders and residents to fight these natural hazards, and mobile crowdsensing can provide large-scale monitoring of hazards by pictures and/or input provided by mobile users. Although most users are willing to help, they may hesitate to participate in such a crowdsensing task due to privacy concerns, as their private information including GPS locations may be leaked during the transmissions to a cloud server or from the storage on the server. This project investigates a hardware and software architecture for aggregation-free and privacy-aware mobile crowdsensing by integrating software and hardware design, edge computing, distributed spatiotemporal optimization, and machine-learning-based privacy protection. Without aggregating raw sensor data to a central server, this project passes latent representations of user data among edge servers until they recover the data of all areas by spatiotemporal interpolation. The educational components of this project include local-outreach programs (e.g., the University Minority Mentor Program at the University of Florida and the research week fair at the University of California, Merced) and summer internships to enhance research opportunities for underrepresented populations, including minority and female students. This project investigates a novel software and hardware architecture that integrates spatiotemporal prediction and distributed optimization into edge computing for aggregation-free and privacy-aware mobile crowdsensing. This project designs a machine-learning pipeline that predicts sensing measurements with partially-available crowdsensed data, at the same time providing privacy-awareness without aggregating sensor data to a central server. An edge computing platform is developed to efficiently manage the above machine-learning pipeline and automatically scale up the computing resources of multiple edge servers. Two important applications, natural hazard (flood) and public health (body temperature) monitoring, will be implemented to evaluate system effectiveness and demonstrate societal impact.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
移动人群感知利用移动设备(例如,智能手机和可穿戴设备)收集来自用户的感知数据,并测量时空现象(例如,空气质量和交通速度)。然而,现有的人群感知解决方案主要构建在以云为中心的方法之上,这会带来巨大的安全和隐私挑战。例如,对洪水和野火的准确和实时的态势感知对于事件指挥官和居民抗击这些自然灾害非常重要,而移动人群感知可以通过移动用户提供的图片和/或输入来提供大规模的危险监测。尽管大多数用户愿意提供帮助,但出于隐私考虑,他们可能会犹豫是否参与这样的群测任务,因为他们的私人信息(包括GPS位置)可能会在传输到云服务器或从服务器上的存储空间中泄露。该项目通过集成软硬件设计、边缘计算、分布式时空优化和基于机器学习的隐私保护,研究了一种无聚集和隐私感知的移动人群感知的硬件和软件架构。该项目不将原始传感器数据聚合到中央服务器,而是在边缘服务器之间传递用户数据的潜在表示,直到它们通过时空内插恢复所有区域的数据。该项目的教育部分包括当地外展计划(例如,佛罗里达大学的大学少数族裔导师计划和加州大学默塞德分校的研究周博览会)和暑期实习,以增加少数族裔和女性学生等代表不足的人群的研究机会。该项目研究了一种新的软硬件架构,将时空预测和分布式优化集成到边缘计算中,以实现无聚集和隐私感知的移动人群感知。该项目设计了一个机器学习管道,该管道使用部分可用的众感数据来预测传感测量,同时提供隐私感知,而无需将传感器数据聚合到中央服务器。开发了一个边缘计算平台,以有效地管理上述机器学习管道,并自动扩展多个边缘服务器的计算资源。将实施自然灾害(洪水)和公共健康(体温)监测两个重要应用,以评估系统的有效性和展示社会影响。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Driving Maneuver Anomaly Detection Based on Deep Auto-Encoder and Geographical Partitioning
  • DOI:
    10.1145/3563217
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Miaomiao Liu;K. Yang;Yanjie Fu;Dapeng Oliver Wu;Wan Du
  • 通讯作者:
    Miaomiao Liu;K. Yang;Yanjie Fu;Dapeng Oliver Wu;Wan Du
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wan Du其他文献

Exploring Deep Reinforcement Learning for Holistic Smart Building Control
探索深度强化学习的整体智能建筑控制
CO-MAP: Improving Multiple Access Efficiency of Mobile Wireless Network with Location Input
CO-MAP:通过位置输入提高移动无线网络的多路访问效率
Microdebrider vs. electrocautery for tonsillectomy: A meta-analysis
  • DOI:
    10.1016/j.ijporl.2010.09.007
  • 发表时间:
    2010-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Wan Du;Bin Ma;Yufen Guo;Kehu Yang
  • 通讯作者:
    Kehu Yang
Inhibition of STAT5 induces G1 cell cycle arrest and reduces tumor cell invasion in human colorectal cancer cells
抑制 STAT5 可诱导人结直肠癌细胞 G1 细胞周期停滞并减少肿瘤细胞侵袭
  • DOI:
    10.1038/labinvest.2009.11
  • 发表时间:
    2009-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qin-Chuan Liang;Ying-Xuan Chen;Jing-Yuan Fang;Hui-Min Chen;Wen-Yu Su;Zhi-Gang Zhang;Wan Du;Hua Xiong
  • 通讯作者:
    Hua Xiong
MODES: Multi-sensor occupancy data-driven estimation system for smart buildings
模式:智能建筑多传感器占用数据驱动估计系统

Wan Du的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wan Du', 18)}}的其他基金

CAREER: A Networking and Learning Co-Design Framework for Data-Efficient Resource Management
职业:用于数据高效资源管理的网络和学习协同设计框架
  • 批准号:
    2239458
  • 财政年份:
    2023
  • 资助金额:
    $ 19.01万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331302
  • 财政年份:
    2024
  • 资助金额:
    $ 19.01万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331301
  • 财政年份:
    2024
  • 资助金额:
    $ 19.01万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403134
  • 财政年份:
    2024
  • 资助金额:
    $ 19.01万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 19.01万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 19.01万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
  • 批准号:
    2403408
  • 财政年份:
    2024
  • 资助金额:
    $ 19.01万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
  • 批准号:
    2423813
  • 财政年份:
    2024
  • 资助金额:
    $ 19.01万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402806
  • 财政年份:
    2024
  • 资助金额:
    $ 19.01万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403135
  • 财政年份:
    2024
  • 资助金额:
    $ 19.01万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
  • 批准号:
    2403409
  • 财政年份:
    2024
  • 资助金额:
    $ 19.01万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了