Analysis and Simulation of Extremes and Rare Events in Complex Systems
复杂系统中极值和罕见事件的分析与仿真
基本信息
- 批准号:2009923
- 负责人:
- 金额:$ 36.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
It is vital to be able to accurately predict the probability of rare and extreme events, such as heatwaves and hurricanes, in particular from climate models and climate data. Better techniques to estimate the probability of rare events and extremes are of obvious benefit to society, and will lead to better planning for floods, heatwaves, and other exigencies. Prediction from computer simulations or from real world data is an extremely challenging task. Brute force simulations by computer are often not feasible; the number of computer simulations it requires to obtain accurate estimates of the probability and form of rare events is too high for this to be a useful method in practice. In addition to this, we typically lack sufficient data to make confident predictions about rare events and extremes from climate records. Two strands of research will be developed. First, to develop a rigorous understanding of a technique from probability called importance sampling in simple mathematical models with the aim to have a firm foundation for their implementation in more realistic and complicated climate models. Importance sampling in a sense makes rare events less rare and allows reliable estimates of rare events in situations where brute force simulations are not feasible. Second, a statistical technique called extreme value theory will be developed in order to allow better estimates of the probabilities of the duration of extremes, such as heatwaves, from climate models and data.The Principal Investigators will develop a technique from importance sampling called genealogical particle analysis to speed up sampling by making rare events more common. The steps enabling the speedup may be tracked and accounted for to obtain more accurate estimates of rare events with less computational effort. Extreme value theory for physical observables such as temperature, wind velocity and energy for climate models will be developed and tested on simple climate models and extended to determine the probability of the duration of extremes, such as heatwaves, from time series data. Clustering algorithms based on information theory will be developed to sort data from spatially distinct sites to amplify the data available to better predict, for example, heatwaves and cold spells. The investigation will be in part theoretical, numerical and data analytic. Progress in this area would significantly improve our conceptual understanding of rare events and extremes in complex systems such as the climate and our ability to predict their behavior. The investigators past work on extreme value theory has been recognized and cited by meteorologists; it has detailed how extreme value theory should be applied to deterministic models. The current research will be at the interface of applications and of general interest to scientists modeling complex systems. In addition, the project will provide excellent training in probabilistic techniques and data analysis for the graduate students involved in the research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
能够准确预测热浪和飓风等罕见和极端事件的概率至关重要,特别是从气候模型和气候数据。更好地估计罕见事件和极端事件的概率的技术对社会有明显的好处,并将导致更好地规划洪水、热浪和其他紧急情况。从计算机模拟或从真实世界数据进行预测是一项极具挑战性的任务。用计算机进行暴力模拟通常是不可行的;为了获得对罕见事件的概率和形式的准确估计,它需要进行计算机模拟的次数太多,这在实践中不是一种有用的方法。除此之外,我们通常缺乏足够的数据,无法根据气候记录对罕见事件和极端事件做出自信的预测。将开展两个方面的研究。首先,在简单的数学模型中发展一种被称为重要性抽样的概率技术的严格理解,目的是为它们在更现实和复杂的气候模型中的实施奠定坚实的基础。在某种意义上,重要性抽样使罕见事件变得不那么罕见,并允许在暴力模拟不可行的情况下可靠地估计罕见事件。其次,将开发一种名为极值理论的统计技术,以便从气候模型和数据中更好地估计极端事件(如热浪)持续时间的概率。首席研究人员将开发一种称为系谱粒子分析的重要抽样技术,通过使罕见事件变得更加常见来加快抽样速度。实现加速的步骤可以被跟踪和考虑,以便以更少的计算工作量获得对罕见事件的更准确的估计。气候模型的温度、风速和能量等物理观测的极值理论将在简单的气候模型上进行开发和测试,并扩展到从时间序列数据确定极端事件(如热浪)持续时间的概率。将开发基于信息论的聚类算法,对来自不同空间位置的数据进行分类,以放大可用于更好地预测例如热浪和寒流的数据。调查将在一定程度上进行理论、数值和数据分析。这一领域的进展将显著提高我们对气候等复杂系统中罕见事件和极端事件的概念性理解,以及我们预测它们行为的能力。研究人员过去在极值理论方面的工作得到了气象学家的认可和引用;它详细说明了极值理论应该如何应用于确定性模式。目前的研究将在应用程序的界面上进行,并引起对复杂系统建模的科学家的普遍兴趣。此外,该项目将为参与研究的研究生提供概率技术和数据分析方面的优秀培训。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hurricane Simulation and Nonstationary Extremal Analysis for a Changing Climate
气候变化的飓风模拟和非平稳极值分析
- DOI:10.1175/jamc-d-22-0003.1
- 发表时间:2022
- 期刊:
- 影响因子:3
- 作者:Carney, Meagan;Kantz, Holger;Nicol, Matthew
- 通讯作者:Nicol, Matthew
Erdos Renyi Laws for Exponentially and Polynomially Mixing Dynamical Systems
指数和多项式混合动力系统的鄂尔多斯仁义定律
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:1
- 作者:Haydn, N: Nicol
- 通讯作者:Haydn, N: Nicol
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Nicol其他文献
Polynomial loss of memory for maps of the interval with a neutral fixed point
具有中性不动点的区间图的多项式记忆损失
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Romain Aimino;Huyi Hu;Matthew Nicol;Andrei Török;Sandro Vaienti - 通讯作者:
Sandro Vaienti
On the Fine Structure of Stationary Measures in Systems Which Contract-on-Average
- DOI:
10.1023/a:1016224000145 - 发表时间:
2002-07-01 - 期刊:
- 影响因子:0.600
- 作者:
Matthew Nicol;Nikita Sidorov;David Broomhead - 通讯作者:
David Broomhead
Clustering of volatility in variable diffusion processes
- DOI:
10.1016/j.physa.2009.06.050 - 发表时间:
2009-10-15 - 期刊:
- 影响因子:
- 作者:
Gemunu H. Gunaratne;Matthew Nicol;Lars Seemann;Andrei Török - 通讯作者:
Andrei Török
Matthew Nicol的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Nicol', 18)}}的其他基金
Conference on Thermodynamic Formalism: Dynamical Systems, Statistical Properties, and Their Applications
热力学形式主义会议:动力系统、统计特性及其应用
- 批准号:
1936829 - 财政年份:2019
- 资助金额:
$ 36.87万 - 项目类别:
Standard Grant
Houston Summer School on Dynamical Systems
休斯顿动力系统暑期学校
- 批准号:
1900964 - 财政年份:2019
- 资助金额:
$ 36.87万 - 项目类别:
Standard Grant
Limit Theorems for Non-Stationary and Random Dynamical Systems
非平稳和随机动力系统的极限定理
- 批准号:
1600780 - 财政年份:2016
- 资助金额:
$ 36.87万 - 项目类别:
Continuing Grant
Statistical properties of dynamical systems: large deviations, extremes, return time statistics and dynamical Borel-Cantelli lemmas.
动力系统的统计特性:大偏差、极值、返回时间统计和动力 Borel-Cantelli 引理。
- 批准号:
1101315 - 财政年份:2011
- 资助金额:
$ 36.87万 - 项目类别:
Continuing Grant
相似国自然基金
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
相似海外基金
CAREER: Advances to the EMT Modeling and Simulation of Restoration Processes for Future Grids
职业:未来电网恢复过程的 EMT 建模和仿真的进展
- 批准号:
2338621 - 财政年份:2024
- 资助金额:
$ 36.87万 - 项目类别:
Continuing Grant
Collaborative Research: Material Simulation-driven Electrolyte Designs in Intermediate-temperature Na-K / S Batteries for Long-duration Energy Storage
合作研究:用于长期储能的中温Na-K / S电池中材料模拟驱动的电解质设计
- 批准号:
2341994 - 财政年份:2024
- 资助金额:
$ 36.87万 - 项目类别:
Standard Grant
EAGER: Liutex-based Sub-Grid Model for Large Eddy Simulation of Turbulent Flow
EAGER:基于 Liutex 的湍流大涡模拟子网格模型
- 批准号:
2422573 - 财政年份:2024
- 资助金额:
$ 36.87万 - 项目类别:
Standard Grant
Global spatially explicit gridded transport model coupled with an integrated assessment model: a new-generation simulation framework for transport decarbonization strategy
全球空间明确网格交通模型与综合评估模型相结合:新一代交通脱碳战略模拟框架
- 批准号:
23K28290 - 财政年份:2024
- 资助金额:
$ 36.87万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
International Collaboration Towards Net Zero Computational Modelling and Simulation (CONTINENTS)
实现净零计算建模和仿真的国际合作(大陆)
- 批准号:
EP/Z531170/1 - 财政年份:2024
- 资助金额:
$ 36.87万 - 项目类别:
Research Grant
DXに基づく急性期病院の認知症ケア専門職連携を促進するSimulation Platformの開発
基于DX开发促进急症医院痴呆护理专业协作的模拟平台
- 批准号:
23K27913 - 财政年份:2024
- 资助金额:
$ 36.87万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER:HCC: Using Virtual Reality Gaming to Develop a Predictive Simulation of Human-Building Interactions: Behavioral and Emotional Modeling for Public Space Design
职业:HCC:使用虚拟现实游戏开发人类建筑交互的预测模拟:公共空间设计的行为和情感建模
- 批准号:
2339999 - 财政年份:2024
- 资助金额:
$ 36.87万 - 项目类别:
Continuing Grant
Travel: NSF Student Travel Grant for 2024 ACM SIGSIM Principles of Advanced Discrete Simulation (PADS)
旅行:2024 年 ACM SIGSIM 高级离散仿真原理 (PADS) 的 NSF 学生旅行补助金
- 批准号:
2416160 - 财政年份:2024
- 资助金额:
$ 36.87万 - 项目类别:
Standard Grant
RAPID: Enhancing WUI Fire Assessment through Comprehensive Data and High-Fidelity Simulation
RAPID:通过综合数据和高保真模拟增强 WUI 火灾评估
- 批准号:
2401876 - 财政年份:2024
- 资助金额:
$ 36.87万 - 项目类别:
Standard Grant