CRCNS Research Proposal: Coupled Learning for Anatomically and Developmentally Consistent Analysis of Macaque-Human Fetal Brain Growth
CRCNS 研究提案:耦合学习对猕猴-人类胎儿大脑生长的解剖学和发育一致性分析
基本信息
- 批准号:2011088
- 负责人:
- 金额:$ 54.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-15 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Neurodevelopmental disorders such as autism spectrum disorder, attention deficit/hyperactivity disorder, fetal alcohol spectrum disorders, and complications associated with premature birth, impact the quality of life of affected individuals over the entire lifespan. Neuroanatomical anatomical differences between people affected by these conditions and “typically developing” individuals have been identified with magnetic resonance imaging (MRI), but the biological mechanisms leading to such differences, and their link to the disease processes, are incompletely understood. It is safe to perform MRI on pregnant women, and recent developments in the ability to account for fetal motion during image acquisition, have enabled high-resolution 3D imaging of the fetal brain. In order to better understand the developmental mechanisms that underlie the trajectory of anatomical changes observed by MRI in humans, longitudinal measurements are also collected in nonhuman primates. Human and nonhuman primates share many similarities in both brain structure and function that allow findings in one to be translated to the other. Advantages of nonhuman primate studies are that many factors that may vary between human pregnancies can be experimentally controlled, and much more detailed longitudinal imaging is possible. This research will develop computational approaches to more precisely link fetal growth between human and nonhuman brains. The work leverages unique human and nonhuman primate imaging datasets with new methods for systematically labeling the brain into corresponding sub-regions and establish closer links between developmental events. This increased precision will enhance knowledge gained from ongoing human observational studies and enable new clinical approaches to address neurodevelopmental diseases.The ability to non-invasively monitor fetal brain growth in both human and nonhuman primates using magnetic resonance imaging (MRI) provides a new opportunity to characterize brain development with longitudinal experimental designs. However, given the increased frequency with which data can be acquired, and quality of high-resolution images, an important new limitation is the inability to translate developmental time points between species at the level of precision of the acquired data. Conventional approaches for studying postnatal brain images utilize processing steps such as spatial normalization to a common anatomical coordinate frame, segmentation into tissue classes, and parcellation into known neuroanatomical regions. Adaptation of these techniques to study the developing fetal brain requires age and species-specific definitions for quantities such as transient developmental zones, or emergence of cortical gyri and sulci. This project makes use of increasingly powerful machine learning techniques and leverages the increasingly rich fetal imaging data now being collected, to extract consistent cross-species measures of brain development. An additional objective is to develop fine scale anatomically and temporally consistent definitions across species. These neuroanatomically localized definitions will then be used to quantify regional morphometric growth during fetal brain development in both species. This work contributes to the computational science and the neuroscience that supports neuroimaging studies of fetal brain development. These developments will provide a new translational resource to link anatomically and temporally specific information about brain development, both in normal growth and in clinical and animal model experiments focused on neurodevelopmental disorders.This award is being co-funded by the CISE Information and Intelligent Systems (IIS) through the CRCNA and BRAIN Programs, and the MPS Division of Mathematical Sciences (DMS) through the Mathematical Biology Program.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
神经发育障碍,如自闭症谱系障碍、注意力缺陷/多动障碍、胎儿酒精谱系障碍和与早产相关的并发症,影响受影响个体整个生命周期的生活质量。受这些条件影响的人和“典型发育”个体之间的神经解剖学差异已通过磁共振成像(MRI)确定,但导致这种差异的生物学机制及其与疾病过程的联系尚未完全了解。对孕妇进行MRI是安全的,并且最近在图像采集期间解释胎儿运动的能力方面的发展已经实现了胎儿大脑的高分辨率3D成像。为了更好地理解在人类中通过MRI观察到的解剖学变化轨迹的基础上的发育机制,还在非人灵长类动物中收集了纵向测量结果。人类和非人类灵长类动物在大脑结构和功能上有许多相似之处,这使得一个发现可以被翻译到另一个。非人类灵长类动物研究的优势在于,人类怀孕期间可能发生变化的许多因素可以通过实验控制,并且可以进行更详细的纵向成像。这项研究将开发计算方法,以更精确地将人类和非人类大脑之间的胎儿生长联系起来。这项工作利用独特的人类和非人类灵长类动物成像数据集,采用新方法将大脑系统地标记为相应的子区域,并在发育事件之间建立更紧密的联系。这种增加的精度将提高知识从正在进行的人类观察性研究,使新的临床方法来解决neurodevelopmental diseases.The能力,非侵入性监测胎儿大脑生长在人类和非人类灵长类动物使用磁共振成像(MRI)提供了一个新的机会,以表征大脑发育的纵向实验设计。然而,考虑到数据获取频率的增加以及高分辨率图像的质量,一个重要的新限制是无法在所获取数据的精确度水平上转换物种之间的发育时间点。用于研究出生后脑图像的常规方法利用处理步骤,诸如对共同解剖坐标系的空间归一化、分割成组织类别以及分割成已知的神经解剖区域。适应这些技术来研究发育中的胎儿大脑需要年龄和物种特异性的定义数量,如短暂的发育区,或出现皮质脑回和脑沟。该项目利用越来越强大的机器学习技术,并利用目前收集的越来越丰富的胎儿成像数据,提取一致的跨物种大脑发育指标。另一个目标是开发精细尺度的解剖学和时间上一致的定义跨物种。这些神经解剖学本地化的定义,然后将被用来量化区域形态测量生长在两个物种的胎儿大脑发育过程中。这项工作有助于计算科学和神经科学,支持胎儿大脑发育的神经影像学研究。这些发展将提供一个新的翻译资源,以联系解剖学和时间上的具体信息,大脑发育,无论是在正常生长和临床和动物模型实验集中在神经发育障碍。这个奖项是共同资助的CISE信息和智能系统(IIS)通过CRCNA和脑计划,MPS Division of Mathematical Sciences(DMS)该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查进行评估,被认为值得支持的搜索.
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nests of dividing neuroblasts sustain interneuron production for the developing human brain.
- DOI:10.1126/science.abk2346
- 发表时间:2022-01-28
- 期刊:
- 影响因子:0
- 作者:Paredes MF;Mora C;Flores-Ramirez Q;Cebrian-Silla A;Del Dosso A;Larimer P;Chen J;Kang G;Gonzalez Granero S;Garcia E;Chu J;Delgado R;Cotter JA;Tang V;Spatazza J;Obernier K;Ferrer Lozano J;Vento M;Scott J;Studholme C;Nowakowski TJ;Kriegstein AR;Oldham MC;Hasenstaub A;Garcia-Verdugo JM;Alvarez-Buylla A;Huang EJ
- 通讯作者:Huang EJ
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Colin Studholme其他文献
Language processing for different input modalities
- DOI:
10.1016/s1053-8119(00)91218-7 - 发表时间:
2000-05-01 - 期刊:
- 影响因子:
- 作者:
Alexandre Carpentier;Ken Pugh;Colin Studholme;Dennis Spencer;Todd Constable - 通讯作者:
Todd Constable
Evidence of language plasticity in epilepsy
- DOI:
10.1016/s1053-8119(00)91219-9 - 发表时间:
2000-05-01 - 期刊:
- 影响因子:
- 作者:
Alexandre Carpentier;Mike Westerveld;Ken Pugh;Oskar Skrinjar;Colin Studholme;Kevin MacCarthy;James Thompson;Dennis Spencer;Todd Constable - 通讯作者:
Todd Constable
Colin Studholme的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
CRCNS US-German Collaborative Research Proposal: Neural and computational mechanisms of flexible goal-directed decision making
CRCNS 美德合作研究提案:灵活目标导向决策的神经和计算机制
- 批准号:
2309022 - 财政年份:2024
- 资助金额:
$ 54.14万 - 项目类别:
Standard Grant
CRCNS Research Proposal: Modeling traveling waves in the human cortex
CRCNS 研究提案:模拟人类皮层中的行波
- 批准号:
2309174 - 财政年份:2023
- 资助金额:
$ 54.14万 - 项目类别:
Continuing Grant
CRCNS US-German Research Proposal - The diversification of retinal ganglion cells: A combined transcriptomic, genome engineering and imaging approach
CRCNS 美国-德国研究提案 - 视网膜神经节细胞的多样化:转录组学、基因组工程和成像相结合的方法
- 批准号:
2309039 - 财政年份:2023
- 资助金额:
$ 54.14万 - 项目类别:
Standard Grant
CRCNS Research Proposal: A Unified Framework for Unsupervised Sparse-to-dense Brain Image Generation and Neural Circuit Reconstruction
CRCNS 研究提案:无监督稀疏到密集脑图像生成和神经回路重建的统一框架
- 批准号:
2309073 - 财政年份:2023
- 资助金额:
$ 54.14万 - 项目类别:
Continuing Grant
CRCNS US-France Research Proposal: Neural computations of adaptive temporal integration in auditory cortex
CRCNS 美国-法国研究提案:听觉皮层自适应时间整合的神经计算
- 批准号:
2308725 - 财政年份:2023
- 资助金额:
$ 54.14万 - 项目类别:
Standard Grant
CRCNS Research Proposal: Learning by Looking: Modeling visual system representation formation via foveated sensing in a 3-D world
CRCNS 研究提案:通过观察学习:通过 3D 世界中的注视点感知对视觉系统表征形成进行建模
- 批准号:
2309041 - 财政年份:2023
- 资助金额:
$ 54.14万 - 项目类别:
Continuing Grant
CRCNS Research Proposal: Novel computational approaches for neural speech prostheses and causal dynamics of language processing
CRCNS 研究提案:神经语音假体和语言处理因果动力学的新型计算方法
- 批准号:
2309057 - 财政年份:2023
- 资助金额:
$ 54.14万 - 项目类别:
Standard Grant
CRCNS US-German Research Proposal: Quantitative and Computational Dissection of Glutamatergic Crosstalk at Tripartite Synapses
CRCNS 美德研究提案:三方突触谷氨酸能串扰的定量和计算剖析
- 批准号:
10612169 - 财政年份:2023
- 资助金额:
$ 54.14万 - 项目类别:
CRCNS US-French Research Proposal: Impact of network state on corticocortical communication
CRCNS 美法研究提案:网络状态对皮质通讯的影响
- 批准号:
2207707 - 财政年份:2022
- 资助金额:
$ 54.14万 - 项目类别:
Standard Grant
CRCNS US-Spain Research Proposal: Collaborative Research: Tracking and modeling the neurobiology of multilingual speech recognition
CRCNS 美国-西班牙研究提案:合作研究:跟踪和建模多语言语音识别的神经生物学
- 批准号:
2207770 - 财政年份:2022
- 资助金额:
$ 54.14万 - 项目类别:
Continuing Grant














{{item.name}}会员




