CIBR: Full-Spectrum Prediction of Peptide Tandem Mass Spectra using Deep Neural Networks
CIBR:使用深度神经网络对肽串联质谱进行全谱预测
基本信息
- 批准号:2011271
- 负责人:
- 金额:$ 78.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The last decade has witnessed rapid advances in mass spectrometry (MS) technology. In particular, the liquid chromatograph coupled tandem mass spectrometry (LC-MS/MS) has become a popular analytical tool for characterizing complex protein samples in many branches of life sciences, including microbiology, environmental science, plant biology, agriculture and biomedicine. This project aims to exploit publicly available proteomic data for predicting tandem mass (MS/MS) spectra of peptides. Successful prediction of peptide MS/MS spectra is of great theoretical interests (for better understanding mechanisms of peptide fragmentation in mass spectrometers), and will significantly improve the peptide identification, which is critical for the analyses of complex protein samples. The PIs of this project are actively involved and lead some the school and departments outreach activities and events, including the annual summer camp for girl scouts. They plan to recruit students from HBCU institutes to participate summer research each year in this project.The PIs of the project propose to a sequence-to-sequence (seq2seq) deep learning model for predicting the full MS/MS spectra of peptides directly from their sequences without any assumption of fragmentation rules. They will also exploit the multitask learning (MTL) approach for predicting the MS/MS spectra from peptides containing post-translation modification (PTMs), and the MS/MS spectra acquired by using different ion activation methods, such as Electron Transfer Dissociation (ETDs). The deep learning models will be implemented and released in open source software tools to be used by the research community. The update of the research project will be made available through the project website: http://www.predfull.com.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
过去十年见证了质谱(MS)技术的快速发展。特别是,液相色谱耦合串联质谱(LC-MS/MS)已成为一种流行的分析工具,用于表征复杂的蛋白质样品在生命科学的许多分支,包括微生物学,环境科学,植物生物学,农业和生物医学。本计画的目的是利用公开的蛋白质组学资料来预测多肽的串联质谱。成功预测肽MS/MS谱具有重要的理论意义(为了更好地理解质谱仪中肽片段化的机制),并且将显著改善肽鉴定,这对于复杂蛋白质样品的分析至关重要。该项目的主要负责人积极参与并领导了学校和部门的一些外联活动和活动,包括每年的女童子军夏令营。他们计划每年从HBCU研究所招募学生参与该项目的暑期研究。该项目的PI提出了一个序列到序列(seq 2seq)深度学习模型,用于直接从序列预测肽的完整MS/MS谱,而无需任何碎片规则的假设。他们还将利用多任务学习(MTL)方法来预测含有翻译后修饰(PTM)的肽的MS/MS光谱,以及通过使用不同的离子活化方法(如电子转移解离(ETD))获得的MS/MS光谱。深度学习模型将在开源软件工具中实现和发布,供研究社区使用。研究项目的更新将通过项目网站提供:http://www.predfull.com.This奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
MetaProD: A Highly-Configurable Mass Spectrometry Analyzer for Multiplexed Proteomic and Metaproteomic Data.
Metaprod:多重蛋白质组学和元蛋白质组学数据的高度可配合的质谱分析仪。
- DOI:10.1021/acs.jproteome.2c00614
- 发表时间:2023-02-03
- 期刊:
- 影响因子:4.4
- 作者:Canderan, Jamie;Stamboulian, Moses;Ye, Yuzhen
- 通讯作者:Ye, Yuzhen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Haixu Tang其他文献
2 Methods of Detecting Aberrations in RNA-Seq and WGS datasets 2 . 1 Fusion Detection in Transcriptomic Data
2 RNA-Seq 和 WGS 数据集中畸变检测方法 2 .
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Yen;Alexander Gawronski;Faraz Hach;Sujun Li;Ibrahim Numanagić;Iman Sarrafi;Swati Mishra;A. McPherson;C. Collins;M. Radovich;Haixu Tang;S. C. Sahinalp - 通讯作者:
S. C. Sahinalp
Data Intensive Computing for Bioinformatics
生物信息学数据密集型计算
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
J. Qiu;Jaliya Ekanayake;Thilina Gunarathne;J. Choi;S. Bae;Yang Ruan;S. Ekanayake;Stephen Wu;Scott Beason;G. Fox;Mina Rho;Haixu Tang - 通讯作者:
Haixu Tang
Studies in Data Intensive Computing : Large Scale DNA Sequence Analysis as the Million Sequence Challenge and Biomedical Computing
数据密集型计算研究:大规模 DNA 序列分析作为百万序列挑战和生物医学计算
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Geoffrey Fox;Xiaohong Qiu;Scott Beason;J. Choi;Mina Rho;Haixu Tang;Neil Devadasan;Gilbert Liu - 通讯作者:
Gilbert Liu
An Approximate de Bruijn Graph Approach to Multiple Local Alignment and Motif Discovery in Protein Sequences
蛋白质序列中多重局部比对和基序发现的近似 de Bruijn 图方法
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Rupali Patwardhan;Haixu Tang;Sun Kim;Mehmet M. Dalkilic - 通讯作者:
Mehmet M. Dalkilic
Designing a large language model for chemists
为化学家设计一个大型语言模型
- DOI:
10.1016/j.patter.2025.101264 - 发表时间:
2025-05-09 - 期刊:
- 影响因子:7.400
- 作者:
Xiaoyi Chen;Haixu Tang - 通讯作者:
Haixu Tang
Haixu Tang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Haixu Tang', 18)}}的其他基金
ABI Innovation: Identification and evolutionary studies of mobile genetic elements
ABI Innovation:移动遗传元件的识别和进化研究
- 批准号:
1262588 - 财政年份:2013
- 资助金额:
$ 78.1万 - 项目类别:
Standard Grant
CAREER: Algorithm and Software Development for MS-Based Glycomics
职业:基于 MS 的糖组学的算法和软件开发
- 批准号:
0642897 - 财政年份:2007
- 资助金额:
$ 78.1万 - 项目类别:
Continuing Grant
相似国自然基金
钴基Full-Heusler合金的掺杂效应和薄膜噪声特性研究
- 批准号:51871067
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Understanding the full spectrum of epigenetic vulnerability in cancer through the delineation of DNA methylation function in gene 3' end
通过描绘基因 3 端 DNA 甲基化功能,全面了解癌症的表观遗传脆弱性
- 批准号:
10765365 - 财政年份:2023
- 资助金额:
$ 78.1万 - 项目类别:
A full spectrum rational approach to identify antiarrhythmic agents targeting IKs Channels
识别针对 IK 通道的抗心律失常药物的全谱理性方法
- 批准号:
10734513 - 财政年份:2023
- 资助金额:
$ 78.1万 - 项目类别:
Cannabis for Palliative Care in Cancer: A Placebo-controlled Randomized Trial of Full Spectrum Hemp-derived CBD/THC
大麻用于癌症姑息治疗:全谱大麻衍生 CBD/THC 的安慰剂对照随机试验
- 批准号:
10754176 - 财政年份:2023
- 资助金额:
$ 78.1万 - 项目类别:
Characterizing the full spectrum of genomic variation in biomedically-relevant primates
表征生物医学相关灵长类动物的全谱基因组变异
- 批准号:
10713954 - 财政年份:2023
- 资助金额:
$ 78.1万 - 项目类别:
Cytek Aurora Full Spectrum Flow Cytometer
Cytek Aurora 全谱流式细胞仪
- 批准号:
10429777 - 财政年份:2022
- 资助金额:
$ 78.1万 - 项目类别:
Mapping the Full Spectrum of Human Genetic Variation and Archaic Hominin Introgression in Oceania
绘制大洋洲人类遗传变异和古人类基因渗入的全谱图
- 批准号:
10501175 - 财政年份:2022
- 资助金额:
$ 78.1万 - 项目类别:
SolDAC Full spectrum solar direct air capture and conversion
SolDAC 全光谱太阳能直接空气捕获和转换
- 批准号:
10038044 - 财政年份:2022
- 资助金额:
$ 78.1万 - 项目类别:
EU-Funded
Full Lineal Energy Spectrum Based Tumour and Normal Tissue Biological Effect Models for Ion Therapy
基于全线性能谱的离子治疗肿瘤和正常组织生物效应模型
- 批准号:
567936-2022 - 财政年份:2022
- 资助金额:
$ 78.1万 - 项目类别:
Postgraduate Scholarships - Doctoral














{{item.name}}会员




