Development of Robust, Efficient and Highly Accurate Numerical Methods Based on Godunov-Type Central Schemes

基于Godunov型中心方案的鲁棒、高效和高精度数值方法的开发

基本信息

  • 批准号:
    0610430
  • 负责人:
  • 金额:
    $ 21.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-07-01 至 2010-06-30
  • 项目状态:
    已结题

项目摘要

Development of modern technology requires robust, efficient and highlyaccurate numerical methods for solving time-dependent partialdifferential equations, including multidimensional systems of hyperbolicconservation laws, balance laws, convection-reaction-diffusion equationsand related problems. A family of simple, universal and high-resolutionfinite-volume central schemes has been recently offered as an appealingalternative to more complicated and problem oriented upwind methods.The main goal of the project is applying the central schemes to variousmulti-phase and multi-fluid flow models, the Saint-Venant system ofshallow water equations (which describes flows in rivers and coastalareas), multi-layer shallow water equations (arising in oceanology),models of transport of pollutant in shallow water, several chemotaxismodels, reactive flows (in particular, the models describing stiffdetonation waves), shallow water equations on a rotating sphere,heterogeneous elasticity, granular material flows, dusty gas models(which describe volcanic eruptions), and others. Naturally, theseapplications, especially in the cases of high space dimensions, complexgeometries and moving boundaries/interfaces, require development andimplementation of additional numerical techniques such as differentadaption strategies, hybridization with Lagrangian-type methods,accurate and efficient operator splitting, numerical balancing betweenthe terms that are balanced in the original system of partialdifferential equations (development of well-balanced schemes), andothers that will be in the focus of the proposed research project.Central schemes have proved to be a reliable and robust tool for solvingmultidimensional systems of partial differential equations that describea variety of fundamental conservation laws in fluid mechanics, gasdynamics, geophysics, meteorology, magnetohydrodynamics, astrophysics,multi-component flows, granular flows, reactive flows, semiconductors,non-Newtonian flows, geometric optics, traffic flow, image processing,financial and biological modeling, differential games, optimal control,and many other areas. However, the models used in most practicalapplications are more complicated than just hyperbolic systems ofconservation laws, and therefore central schemes may only serve as abasis in designing robust, efficient and highly accurate numericalmethods. This project is aimed at developing a series of supplementarytechniques that are essential for the extension of applicability ofcentral schemes to many practically important problems, some of themare currently out of reach because the existing numerical methods areeither too inefficient/inaccurate or not applicable at all.
现代科学技术的发展需要强大、高效和高精度的数值方法来求解含时偏微分方程,包括多维双曲守恒律、平衡律、对流反应扩散方程及其相关问题。近年来,人们提出了一族简单、通用、高分辨率的中心有限体积格式,作为对更复杂、更面向问题的迎风方法的一种有吸引力的替代方案,本项目的主要目标是将中心格式应用于各种多相多流体流动模型,即Saint-Venant浅水方程组(描述河流和海岸地区的水流),多层浅水方程(海洋学中出现),浅水中污染物输运模型,几种化学分类模型,反应流(特别是描述刚性爆轰波的模型)、旋转球体上的浅水方程、非均匀弹性、颗粒物质流、含尘气体模型(描述火山爆发)等。自然地,这些应用,特别是在高空间维度、复杂几何形状和移动边界/界面的情况下,需要开发和实现附加的数值技术,例如不同的自适应策略、与拉格朗日型方法的杂交、精确和有效的算子分裂、在原始偏微分方程系统中平衡的项之间的数值平衡中心格式已被证明是求解多维偏微分方程组的可靠和鲁棒的工具,这些方程组描述了流体力学、气体动力学、物理学、气象学、磁流体力学、天体物理学、多组分流、颗粒流、反应流、半导体、非牛顿流、几何光学、交通流、图像处理、金融和生物建模、微分博弈、最优控制以及许多其他领域。然而,在大多数实际应用中使用的模型比仅仅双曲守恒律系统更复杂,因此中心格式只能作为设计鲁棒、高效和高精度数值方法的基础。本项目旨在开发一系列的基本技术,这些技术对于将中心格式的适用性扩展到许多实际重要的问题是必不可少的,其中一些问题目前还无法实现,因为现有的数值方法要么效率太低/不准确,要么根本不适用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Kurganov其他文献

Flux globalization-based well-balanced path-conservative central-upwind scheme for two-dimensional two-layer thermal rotating shallow water equations
  • DOI:
    10.1016/j.jcp.2024.113273
  • 发表时间:
    2024-10-15
  • 期刊:
  • 影响因子:
  • 作者:
    Yangyang Cao;Alexander Kurganov;Yongle Liu;Vladimir Zeitlin
  • 通讯作者:
    Vladimir Zeitlin
Numerical study of the non-conservative NET-RAT traffic flow model by path-conservative central-upwind schemesspan class="inline-figure"img src="//ars.els-cdn.com/content/image/1-s2.0-S0898122124005613-fx001.jpg" width="17" height="19" //span
基于路径守恒中心迎风格式的非守恒 NET-RAT 交通流模型的数值研究
  • DOI:
    10.1016/j.camwa.2024.12.014
  • 发表时间:
    2025-02-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Saeed Mohammadian;Zuduo Zheng;Shaoshuai Chu;Alexander Kurganov
  • 通讯作者:
    Alexander Kurganov
Locally divergence-free well-balanced path-conservative central-upwind schemes for rotating shallow water MHD
  • DOI:
    10.1016/j.jcp.2024.113300
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Alina Chertock;Alexander Kurganov;Michael Redle;Vladimir Zeitlin
  • 通讯作者:
    Vladimir Zeitlin
Stochastic Galerkin method for cloud simulation
Bound- and Positivity-Preserving Path-Conservative Central-Upwind AWENO Scheme for the Five-Equation Model of Compressible Two-Component Flows
  • DOI:
    10.1007/s10915-025-03003-y
  • 发表时间:
    2025-07-29
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Qingcheng Fu;Yaguang Gu;Alexander Kurganov;Bao-Shan Wang
  • 通讯作者:
    Bao-Shan Wang

Alexander Kurganov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Kurganov', 18)}}的其他基金

Collaborative Research: Structure Preserving Numerical Methods for Hyperbolic Balance Laws with Applications to Shallow Water and Atmospheric Models
合作研究:双曲平衡定律的结构保持数值方法及其在浅水和大气模型中的应用
  • 批准号:
    1818666
  • 财政年份:
    2018
  • 资助金额:
    $ 21.42万
  • 项目类别:
    Standard Grant
Collaborative Research: Numerical Methods for Partial Differential Equations Arising in Shallow Water Modeling
合作研究:浅水模拟中出现的偏微分方程的数值方法
  • 批准号:
    1521009
  • 财政年份:
    2015
  • 资助金额:
    $ 21.42万
  • 项目类别:
    Continuing Grant
Collaborative Research: Numerical methods for Shallow Water Equations and Related Models
合作研究:浅水方程及相关模型的数值方法
  • 批准号:
    1216957
  • 财政年份:
    2012
  • 资助金额:
    $ 21.42万
  • 项目类别:
    Standard Grant
Collaborative Research: Development of High-Resolution Finite-Volume Methods for Systems of Nonlinear Time-Dependent PDEs
合作研究:非线性时变偏微分方程组高分辨率有限体积方法的开发
  • 批准号:
    1115718
  • 财政年份:
    2011
  • 资助金额:
    $ 21.42万
  • 项目类别:
    Standard Grant
Godunov-Type Central Schemes for Hyperbolic Problems: Further Development, Adaptation, and Applications
双曲问题的 Godunov 型中心方案:进一步发展、适应和应用
  • 批准号:
    0310585
  • 财政年份:
    2003
  • 资助金额:
    $ 21.42万
  • 项目类别:
    Standard Grant
New High-Resolution Semi-Discrete Central Schemes: Derivation, Applications and Local Error Analysis
新的高分辨率半离散中心方案:推导、应用和局部误差分析
  • 批准号:
    0196439
  • 财政年份:
    2001
  • 资助金额:
    $ 21.42万
  • 项目类别:
    Standard Grant
New High-Resolution Semi-Discrete Central Schemes: Derivation, Applications and Local Error Analysis
新的高分辨率半离散中心方案:推导、应用和局部误差分析
  • 批准号:
    0073631
  • 财政年份:
    2000
  • 资助金额:
    $ 21.42万
  • 项目类别:
    Standard Grant

相似国自然基金

供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
  • 批准号:
    70601028
  • 批准年份:
    2006
  • 资助金额:
    7.0 万元
  • 项目类别:
    青年科学基金项目
心理紧张和应力影响下Robust语音识别方法研究
  • 批准号:
    60085001
  • 批准年份:
    2000
  • 资助金额:
    14.0 万元
  • 项目类别:
    专项基金项目
ROBUST语音识别方法的研究
  • 批准号:
    69075008
  • 批准年份:
    1990
  • 资助金额:
    3.5 万元
  • 项目类别:
    面上项目
改进型ROBUST序贯检测技术
  • 批准号:
    68671030
  • 批准年份:
    1986
  • 资助金额:
    2.0 万元
  • 项目类别:
    面上项目

相似海外基金

Development of an Efficient, Parameter Uniform and Robust Fluid Solver in Porous Media with Complex Geometries
复杂几何形状多孔介质中高效、参数均匀且鲁棒的流体求解器的开发
  • 批准号:
    2309557
  • 财政年份:
    2023
  • 资助金额:
    $ 21.42万
  • 项目类别:
    Standard Grant
Design and development of organosilica/polymer interpenetrating networks derived membranes for high-efficient, robust carbon dioxide capture
设计和开发有机二氧化硅/聚合物互穿网络衍生膜,用于高效、稳健的二氧化碳捕获
  • 批准号:
    19K23576
  • 财政年份:
    2019
  • 资助金额:
    $ 21.42万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
A Simple, Efficient and Robust Code Completion System for ESTI Development Environment
用于ESTI开发环境的简单、高效、健壮的代码完成系统
  • 批准号:
    492482-2015
  • 财政年份:
    2016
  • 资助金额:
    $ 21.42万
  • 项目类别:
    Engage Grants Program
Development of robust and energy-efficient medium access control mechanism for wireless sensor networks in residential buildings
为住宅建筑中的无线传感器网络开发稳健且节能的介质访问控制机制
  • 批准号:
    451970-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 21.42万
  • 项目类别:
    Engage Grants Program
Determination of mass transport properties in heavy oils and polymers, and development of robust and efficient optimization algorithms for chemical engineering applications
测定重油和聚合物中的传质特性,并为化学工程应用开发稳健且高效的优化算法
  • 批准号:
    250295-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 21.42万
  • 项目类别:
    Discovery Grants Program - Individual
Development of efficient, robust and architecturally-flexible structural systems using innovative blind-bolted connections
使用创新的盲螺栓连接开发高效、坚固且建筑灵活的结构系统
  • 批准号:
    LP110200511
  • 财政年份:
    2012
  • 资助金额:
    $ 21.42万
  • 项目类别:
    Linkage Projects
Development of an efficient, robust MS-based platform for early detection of acute kidney injury
开发高效、稳健的基于 MS 的平台,用于早期检测急性肾损伤
  • 批准号:
    G1000791/1
  • 财政年份:
    2011
  • 资助金额:
    $ 21.42万
  • 项目类别:
    Research Grant
Development of robust and efficient algorithms in numerical linear algebra
开发稳健且高效的数值线性代数算法
  • 批准号:
    23700023
  • 财政年份:
    2011
  • 资助金额:
    $ 21.42万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Determination of mass transport properties in heavy oils and polymers, and development of robust and efficient optimization algorithms for chemical engineering applications
测定重油和聚合物中的传质特性,并为化学工程应用开发稳健且高效的优化算法
  • 批准号:
    250295-2008
  • 财政年份:
    2011
  • 资助金额:
    $ 21.42万
  • 项目类别:
    Discovery Grants Program - Individual
Determination of mass transport properties in heavy oils and polymers, and development of robust and efficient optimization algorithms for chemical engineering applications
测定重油和聚合物中的传质特性,并为化学工程应用开发稳健且高效的优化算法
  • 批准号:
    250295-2008
  • 财政年份:
    2010
  • 资助金额:
    $ 21.42万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了