Elements:Software:NSCI: Empowering Data-driven Discovery with a Provenance Collection, Management, and Analysis Software Infrastructure

元素:软件:NSCI:通过来源收集、管理和分析软件基础设施支持数据驱动的发现

基本信息

  • 批准号:
    1835892
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

Scientific breakthroughs are increasingly powered by advanced computing and data analysis capabilities delivered by high performance computing (HPC) systems. In the meantime, many scientific problems have moved to a level of complexity that the ability of understanding the results, auditing how a result is generated, and reproducing the important experiments or simulation results, is critical to scientists. Enabling such a capability in HPC systems requires a holistic collection, management, and analysis software infrastructure for "provenance" data, the metadata that describes the history of a piece of data. Such a software infrastructure does not exist yet, which motivates the proposed software development of a lightweight provenance service. With such a software element, many advanced data management functionalities such as identifying the data sources, parameters, or assumptions behind a given result, auditing data history and usage, or understanding the detailed process that how different input data are transformed into outputs can be possible. Responding to the National Strategic Computing Initiative, this project will provide an attractive software infrastructure to future national HPC systems to improve the productivity of science in complex HPC simulation and analysis cycles. The project team will also recruit underrepresented students, mentor graduate and undergraduate students, integrate results into curriculum, and publish and disseminate results.The lightweight provenance service software on HPC systems will provide: 1) an always-on, background service that automatically and transparently collects and manages provenance for scientific applications, 2) captures comprehensive provenance with accurate causality to support a wide range of use cases, and 3) provides easy-to-use analysis tools for scientists to quickly explore and utilize the provenance. This project will integrate the development, education, and outreach efforts tightly together.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
高性能计算(HPC)系统所提供的先进计算和数据分析能力日益推动科学突破。与此同时,许多科学问题已经发展到一个复杂的水平,理解结果的能力,审计结果是如何产生的,并复制重要的实验或模拟结果,对科学家来说是至关重要的。在HPC系统中启用这样的功能需要针对“出处”数据(描述数据段历史的元数据)的整体收集、管理和分析软件基础设施。这样的软件基础设施还不存在,这激发了轻量级出处服务的拟议软件开发。有了这样的软件元素,许多高级数据管理功能就成为可能,例如识别给定结果背后的数据源、参数或假设,审计数据历史和使用情况,或者了解不同输入数据如何转换为输出的详细过程。响应国家战略计算计划,该项目将为未来的国家HPC系统提供有吸引力的软件基础设施,以提高复杂HPC模拟和分析周期的科学生产力。项目团队还将招募代表性不足的学生,指导研究生和本科生,将结果整合到课程中,并发布和传播结果。HPC系统上的轻量级出处服务软件将提供:1)始终在线的后台服务,自动透明地收集和管理科学应用的来源,2)捕获具有准确因果关系的全面出处,以支持广泛的用例,3)为科学家提供易于使用的分析工具,以快速探索和利用出处。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
MonSTer: An Out-of-the-Box Monitoring Tool for High Performance Computing Systems
MonSTer:用于高性能计算系统的开箱即用的监控工具
MIQS: metadata indexing and querying service for self-describing file formats
I/O characteristic discovery for storage system optimizations
  • DOI:
    10.1016/j.jpdc.2020.08.005
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiang Zhou;Yong Chen;Dong Dai;Zhuang Yu;Weiping Wang
  • 通讯作者:
    Jiang Zhou;Yong Chen;Dong Dai;Zhuang Yu;Weiping Wang
Exploiting user activeness for data retention in HPC systems
利用用户活跃度来保留 HPC 系统中的数据
  • DOI:
    10.1145/3458817.3476201
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhang, Wei;Byna, Suren;Sim, Hyogi;Lee, Sangkeun;Vazhkudai, Sudharshan;Chen, Yong
  • 通讯作者:
    Chen, Yong
RadarViewer : Visualizing the dynamics of multivariate data
RadarViewer:可视化多元数据的动态
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yong Chen其他文献

Predictions for Central Lymph Node Metastasis of Papillary Thyroid Carcinoma via CNN-Based Fusion Modeling of Ultrasound Images
通过基于 CNN 的超声图像融合模型预测甲状腺乳头状癌中央淋巴结转移
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Yong Chen;Yan;Z. Cai;Mian Jiang
  • 通讯作者:
    Mian Jiang
Shock mitigation effects of cellular cladding on submersible hull subjected to deep underwater explosion
多孔包壳对深水下爆炸作用下潜水器的冲击缓解效果
  • DOI:
    10.1016/j.oceaneng.2016.03.037
  • 发表时间:
    2016-05
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Caiyu Yin;Zeyu Jin;Yong Chen;Hongxing Hua
  • 通讯作者:
    Hongxing Hua
Algorithm-level Feedback-controlled Adaptive data prefetcher: Accelerating data access for high-performance processors
算法级反馈控制自适应数据预取器:加速高性能处理器的数据访问
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Yong Chen;Huaiyu Zhu;Hui Jin;Xian
  • 通讯作者:
    Xian
Experimental investigation on the characteristics of maximum bubble size of subcooled flow boiling in narrow rectangular channel under different system pressure
不同系统压力下窄矩形通道过冷流沸腾最大气泡尺寸特性的实验研究
Determination of FCMC and SCMC and Speculation of Hexagonally Packed Rods Concentration and Palisade Layer Structure Concentration of SDBS and SDS by Ultraviolet-visible Spectrophotometry
紫外可见分光光度法测定FCMC和SCMC以及六方堆积棒浓度和SDBS和SDS栅栏层结构浓度的推测
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Zhaoxi Huang;Fenghui Zhao;Min Liu;Yong Chen
  • 通讯作者:
    Yong Chen

Yong Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yong Chen', 18)}}的其他基金

Collaborative Research: Fusion of Siloed Data for Multistage Manufacturing Systems: Integrative Product Quality and Machine Health Management
协作研究:多级制造系统的孤立数据融合:集成产品质量和机器健康管理
  • 批准号:
    2323084
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Conference: 2024 Manufacturing Science and Engineering Conference and 52nd North American Manufacturing Research Conference; Knoxville, Tennessee; 17-21 June 2024
会议:2024年制造科学与工程会议暨第52届北美制造研究会议;
  • 批准号:
    2344983
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Quantum Many-Body Physics in Spin-Orbit Coupled Bose Gases
自旋轨道耦合玻色气体中的量子多体物理
  • 批准号:
    2012185
  • 财政年份:
    2020
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Phase-II IUCRC Texas Tech University: Center for Cloud and Autonomic Computing
第二阶段 IUCRC 德克萨斯理工大学:云和自主计算中心
  • 批准号:
    1939140
  • 财政年份:
    2020
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Collaborative Research: CESER: EAGER: "FabWave" - A Pilot Manufacturing Cyberinfrastructure for Shareable Access to Information Rich Product Manufacturing Data
合作研究:CESER:EAGER:“FabWave”——用于共享访问信息丰富的产品制造数据的试点制造网络基础设施
  • 批准号:
    1812675
  • 财政年份:
    2018
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
CSR: Small: Collaborative Research: Tuning Extreme-scale Storage Stack through Deep Reinforcement Learning
CSR:小型:协作研究:通过深度强化学习调整超大规模存储堆栈
  • 批准号:
    1817094
  • 财政年份:
    2018
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: Strain Based Devices for Switches and Memory Applications
合作研究:用于开关和存储器应用的基于应变的器件
  • 批准号:
    1711332
  • 财政年份:
    2017
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: Uncovering Vulnerabilities in Parallel File Systems for Reliable High Performance Computing
SHF:小型:协作研究:发现并行文件系统中的漏洞以实现可靠的高性能计算
  • 批准号:
    1718336
  • 财政年份:
    2017
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Additive Manufacturing of Controlled Anisotropic Materials via Electrically Assisted Nanocomposite Fabrication
通过电辅助纳米复合材料制造受控各向异性材料的增材制造
  • 批准号:
    1663663
  • 财政年份:
    2017
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Dynamics and Excitations of Spin-Orbit-Coupled Bose-Einstein Condensates
自旋轨道耦合玻色-爱因斯坦凝聚体的动力学和激发
  • 批准号:
    1708134
  • 财政年份:
    2017
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: Elements: Software: NSCI: Chrono-An open-source simulation platform for computational dynamics problems
合作研究:要素:软件:NSCI:Chrono-计算动力学问题的开源仿真平台
  • 批准号:
    1835727
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Elements: NSCI-Software -- A General and Effective B-Spline R-Matrix Package for Charged-Particle and Photon Collisions with Atoms, Ions, and Molecules
元素:NSCI 软件——用于带电粒子和光子与原子、离子和分子碰撞的通用且有效的 B 样条 R 矩阵包
  • 批准号:
    1834740
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Elements: Software: NSCI: A high performance suite of SVD related solvers for machine learning
要素: 软件:NSCI:用于机器学习的 SVD 相关求解器的高性能套件
  • 批准号:
    1835821
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
NSCI Elements: Software - PFSTRASE - A Parallel FileSystem TRacing and Analysis SErvice to Enhance Cyberinfrastructure Performance and Reliability
NSCI Elements:软件 - PFSTRASE - 用于增强网络基础设施性能和可靠性的并行文件系统跟踪和分析服务
  • 批准号:
    1835135
  • 财政年份:
    2018
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: Software: NSCI: HDR: Building An HPC/HTC Infrastructure For The Synthesis And Analysis Of Current And Future Cosmic Microwave Background Datasets
合作研究:要素:软件:NSCI:HDR:构建 HPC/HTC 基础设施以合成和分析当前和未来的宇宙微波背景数据集
  • 批准号:
    1835526
  • 财政年份:
    2018
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: Software NSCI: Constitutive Relation Inference Toolkit (CRIKit)
协作研究:元素:软件 NSCI:本构关系推理工具包 (CRIKit)
  • 批准号:
    1835825
  • 财政年份:
    2018
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Elements: Software: NSCI: Efficient GPU Enabled QM/MM Calculations: AMBER Coupled with QUICK
要素: 软件:NSCI:支持高效 GPU 的 QM/MM 计算:AMBER 与 QUICK 相结合
  • 批准号:
    1835144
  • 财政年份:
    2018
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Elements: Software: NSCI: A Quantum Electromagnetics Simulation Toolbox (QuEST) for Active Heterogeneous Media by Design
要素: 软件:NSCI:用于主动异质介质设计的量子电磁仿真工具箱 (QuEST)
  • 批准号:
    1835267
  • 财政年份:
    2018
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: Software: NSCI: Constitutive Relation Inference Toolkit (CRIKit)
协作研究:要素:软件:NSCI:本构关系推理工具包 (CRIKit)
  • 批准号:
    1835792
  • 财政年份:
    2018
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: Software: NSCI: HDR: Building An HPC/HTC Infrastructure For The Synthesis And Analysis Of Current And Future Cosmic Microwave Background Datasets
合作研究:要素:软件:NSCI:HDR:构建 HPC/HTC 基础设施以合成和分析当前和未来的宇宙微波背景数据集
  • 批准号:
    1835768
  • 财政年份:
    2018
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了