Identifying the unknowns: towards structural elucidation of small molecules using mass spectrometry
识别未知数:利用质谱法阐明小分子的结构
基本信息
- 批准号:242259350
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2013
- 资助国家:德国
- 起止时间:2012-12-31 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Rapid identification of small compounds from small amounts of substance is of interest in many areas of biology and medicine such as metabolomics, drug discovery, biomarker discovery, and diagnostics. Today, mass spectrometry (MS) is a key technology for the identification of small molecules. Due to immense technological advances in mass spectrometry over the last years, the amount and complexity of MS data has been growing rapidly. Computational analysis of such data is presumed to be one of the major technological hurdles in metabolomics today. We proposed fragmentation trees (FTs) as a model for the fragmentation reactions in the measurement.In the first two years of the project, we have improved the FT calculation, extended the fragmentation tree concept to multistage mass spectrometry, and developed a method to predict fragmentation trees from high resolution GC-MS data. Most importantly, we developed a concept to align such fragmentation trees. The resulting alignment scores were used in various applications, among them the database similarity search tool FT-BLAST. FT alignments outperformed standard spectral comparison in these applications.In the following two years, we will continue to improve the quality of FTs from several analytical platforms as well as the quality of the alignments. We will develop statistically meaningful scores for both the calculation and alignment of FTs. We will provide an internet platform so that fragmentation trees and losses can be evaluated by MS experts. We will construct biochemical reaction networks from MS data. Finally, we will make the developed methods available to mass spectrometrists by an easy-to-use software tool.
从少量物质中快速鉴定小化合物在生物学和医学的许多领域中是令人感兴趣的,例如代谢组学、药物发现、生物标志物发现和诊断。 如今,质谱(MS)是鉴定小分子的关键技术。 由于过去几年质谱技术的巨大进步,MS数据的数量和复杂性迅速增长。 对这些数据的计算分析被认为是当今代谢组学的主要技术障碍之一。我们提出了碎片树(fragmentation tree,FT)作为测量中碎片反应的模型,在项目的前两年,我们改进了FT计算,将碎片树的概念扩展到多级质谱,并发展了一种从高分辨率GC-MS数据预测碎片树的方法。最重要的是,我们开发了一个概念来对齐这种碎片树。所得比对分数用于各种应用中,其中包括数据库相似性搜索工具FT-BLAST。 在这些应用中,FT比对的表现优于标准光谱比较。在接下来的两年里,我们将继续提高多个分析平台的FT质量以及比对质量。我们将为FT的计算和对齐制定具有统计学意义的评分。我们将提供一个互联网平台,以便MS专家可以评估碎片树和损失。我们将从MS数据构建生化反应网络。 最后,我们将通过一个易于使用的软件工具,使开发的方法提供给质谱师。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Sebastian Böcker其他文献
Professor Dr. Sebastian Böcker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Sebastian Böcker', 18)}}的其他基金
Transferable retention time prediction for Liquid Chromatography-Mass Spectrometry-based metabolomics
基于液相色谱-质谱的代谢组学的可转移保留时间预测
- 批准号:
425789784 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
FlipCut Supertrees: Große und akkurate Phylogenien schneller bestimmen
FlipCut Supertrees:更快地确定大型且准确的系统发育
- 批准号:
211926079 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Grants
Algorithms for the Analysis of Approximate Gene Cluster (3AGC)
近似基因簇分析算法 (3AGC)
- 批准号:
156864160 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Research Grants
Identifying the unknowns: towards structural elucidation of small molecules using mass spectrometry
识别未知数:利用质谱法阐明小分子的结构
- 批准号:
164582891 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Research Grants
Parameterized Algorithmics for Bioinformatics
生物信息学参数化算法
- 批准号:
162571619 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Grants
Informatische Methoden für Massenspektrometrie in der Genomik
基因组学中质谱的信息方法
- 批准号:
5400926 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Independent Junior Research Groups
Identifying the Unknowns: Fragmentation Trees and Molecular Fingerprints
识别未知物:碎片树和分子指纹
- 批准号:
324792648 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Project Harvester: Improving molecular fingerprint prediction through self-training
Project Harvester:通过自我训练改进分子指纹预测
- 批准号:
518231245 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Known Unknowns and Unknown Unknowns: Coping with Different States of Uncertainty in a Changing World
已知的未知数和未知的未知数:应对不断变化的世界中的不同不确定性状态
- 批准号:
ES/W013215/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Collaborative Research: Audio for Inclusion: Uncovering Marginalized Student Narratives to Provide Insight to Faculty on the Known Unknowns of Inclusion
合作研究:包容性音频:揭示边缘化学生的叙述,为教师提供有关包容性已知未知的见解
- 批准号:
2114241 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
A comparative study of COVID-19 tests in the Democratic Republic of the Congo and Uganda: Situating the knowns and unknowns in the COVID-19 pandemic
刚果民主共和国和乌干达的 COVID-19 测试比较研究:了解 COVID-19 大流行中的已知和未知情况
- 批准号:
468184106 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Research Grants
Collaborative Research: Audio for Inclusion: Uncovering Marginalized Student Narratives to Provide Insight to Faculty on the Known Unknowns of Inclusion
合作研究:包容性音频:揭示边缘化学生的叙述,为教师提供有关包容性已知未知的见解
- 批准号:
2114242 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER:Exploring the Unknowns: Responses of Soil Microbial Communities to Increased Plant Functional Trait Diversity in Managed Ecosystems
职业:探索未知:土壤微生物群落对管理生态系统中植物功能性状多样性增加的反应
- 批准号:
1941714 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Continuing Grant
III: Medium: Quantifying the Unknown Unknowns for Data Integration
III:媒介:量化数据集成的未知因素
- 批准号:
2033792 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Continuing Grant
Chemometric approach to development of indicators for "toxic unknowns" in municipal wastewater
化学计量学方法开发城市废水中“有毒未知物”的指标
- 批准号:
19K21556 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
Inter-lab comparison of unknowns in polar metabolomics data
极性代谢组学数据中未知数的实验室间比较
- 批准号:
10397327 - 财政年份:2018
- 资助金额:
-- - 项目类别:
A method for elucidating unknowns by coupling traveling wave ion mobility spectrometry and the trajectory method
行波离子淌度谱与轨迹法耦合阐明未知物的方法
- 批准号:
16K12636 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
III: Medium: Quantifying the Unknown Unknowns for Data Integration
III:媒介:量化数据集成的未知因素
- 批准号:
1562657 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Continuing Grant