Transferable retention time prediction for Liquid Chromatography-Mass Spectrometry-based metabolomics

基于液相色谱-质谱的代谢组学的可转移保留时间预测

基本信息

  • 批准号:
    425789784
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research Grants
  • 财政年份:
    2019
  • 资助国家:
    德国
  • 起止时间:
    2018-12-31 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Metabolite identification still represent the major bottleneck in metabolomics. Liquid Chromatography-Mass Spectrometry (LC-MS) is the currently most employed analytical technique in untargeted metabolomics. Currently, less than 10% of spectra in a typical untargeted experiment can be annotated. Therefore, there is a strong need for improved tools for metabolite identification. While mass alone cannot identify molecules, tandem MS yields fragmentation spectra which can be used for structural elucidation. Recently, in silico approaches have been developed and are increasingly used by the metabolomics community, that allow to search in molecular structure databases such as PubChem and ChemSpider. Such structure databases are many orders of magnitude larger than any spectral library and, hence, have a much wider coverage of molecular structures. But even identification by tandem MS will result in numerous spurious identifications. To improve identification quality, two independent parameters, e.g. mass and retention time of a chemical reference standard have to be reported. Today, retention time is mainly used at a later stage of the identification pipeline, and mainly based on comparison with chemical reference standards. However, it would clearly be beneficial if retention times were used at an early stage, in particular for in silico methods; here, we could filter candidates or, even better, modify the scores of candidates based on comparing predicted and observed retention times.This project aims to make better use of retention times for the identification of small biomolecules in LC-MS based untargeted metabolomics, using transferable retention time prediction. Prediction will be based on a two-step approach. First, Machine Learning will be used to predict retention order numbers for give molecular structures; training will be based on an extensively curated collection of retention time data from public available datasets, as well as systematic in-house measurements for reference metabolite standards. In contrast to its mass, retention time is not a feature of a metabolite, but of the combination of metabolite, stationary and mobile phase. Therefore, we will use properties of the employed chromatographic system in addition to molecular fingerprints of metabolites for machine learning. In the second step, retention order numbers will be mapped to retention times, using known and identified substances as anchors of the mapping. Retention order and retention time prediction will be used to filter false positive reaction pairs, and applied to an independent biological dataset from C. elegans secondary metabolism.All curated and acquired data, open-source software for prediction of retention order and retention times will be made freely available to the metabolomics community. Finally, retention time prediction will be integrated into the CSI:FingerID scoring in order to improve its metabolite identification rates.
代谢物鉴定仍然是代谢组学的主要瓶颈。液相色谱-质谱(LC-MS)是目前非靶向代谢组学中最常用的分析技术。目前,在典型的非目标实验中,只有不到10%的光谱可以被注释。因此,迫切需要改进的代谢物鉴定工具。虽然单靠质量不能鉴别分子,但串联MS产生的碎片光谱可用于结构解析。 最近,已经开发了计算机模拟方法,并且代谢组学社区越来越多地使用该方法,该方法允许在分子结构数据库(如PubChem和ChemSpider)中进行搜索。这样的结构数据库比任何光谱库大许多数量级,因此具有更广泛的分子结构覆盖范围。但即使通过串联MS进行鉴定也会导致许多虚假鉴定。为了提高鉴别质量,必须报告两个独立的参数,例如化学参比标准品的质量和保留时间。如今,保留时间主要用于鉴定流程的后期阶段,并且主要基于与化学参比标准品的比较。然而,如果在早期阶段使用保留时间,特别是在计算机模拟方法中,这显然是有益的;在这里,我们可以过滤候选人,或者更好地,基于比较预测和观察到的保留时间来修改候选人的分数。该项目旨在更好地利用保留时间,在基于LC-MS的非靶向代谢组学中识别小生物分子,使用可转移的保留时间预测。预测将基于两步方法。首先,机器学习将用于预测给定分子结构的保留序号;培训将基于从公共可用数据集收集的保留时间数据的广泛策划,以及参考代谢物标准品的系统内部测量。与其质量相反,保留时间不是代谢物的特征,而是代谢物、固定相和移动的相的组合的特征。因此,除了代谢物的分子指纹之外,我们还将使用所采用的色谱系统的特性进行机器学习。在第二步中,将保留顺序编号映射到保留时间,使用已知和已识别的物质作为映射的锚点。保留顺序和保留时间预测将用于过滤假阳性反应对,并应用于来自C.所有策划和获得的数据,用于预测保留顺序和保留时间的开源软件将免费提供给代谢组学社区。最后,保留时间预测将被集成到CSI:FingerID评分中,以提高其代谢物识别率。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Sebastian Böcker其他文献

Professor Dr. Sebastian Böcker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Sebastian Böcker', 18)}}的其他基金

Identifying the unknowns: towards structural elucidation of small molecules using mass spectrometry
识别未知数:利用质谱法阐明小分子的结构
  • 批准号:
    242259350
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grants
FlipCut Supertrees: Große und akkurate Phylogenien schneller bestimmen
FlipCut Supertrees:更快地确定大型且准确的系统发育
  • 批准号:
    211926079
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Algorithms for the Analysis of Approximate Gene Cluster (3AGC)
近似基因簇分析算法 (3AGC)
  • 批准号:
    156864160
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Identifying the unknowns: towards structural elucidation of small molecules using mass spectrometry
识别未知数:利用质谱法阐明小分子的结构
  • 批准号:
    164582891
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Parameterized Algorithmics for Bioinformatics
生物信息学参数化算法
  • 批准号:
    162571619
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Informatische Methoden für Massenspektrometrie in der Genomik
基因组学中质谱的信息方法
  • 批准号:
    5400926
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Independent Junior Research Groups
Project Harvester: Improving molecular fingerprint prediction through self-training
Project Harvester:通过自我训练改进分子指纹预测
  • 批准号:
    518231245
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Identifying the Unknowns: Fragmentation Trees and Molecular Fingerprints
识别未知物:碎片树和分子指纹
  • 批准号:
    324792648
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

HEAL Initiative: Research to Foster an Opioid Use Disorder Treatment System Patients Can Count On
HEAL 计划:促进患者可以信赖的阿片类药物使用障碍治疗系统的研究
  • 批准号:
    10772818
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Discovery of neoepitope immunotherapeutic targets in diffuse pediatric high-grade gliomas
弥漫性儿童高级别胶质瘤中新表位免疫治疗靶点的发现
  • 批准号:
    10774404
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Asian American Prevention Research: A Populomics Epidemiology Cohort (ARISE)
亚裔美国人预防研究:人口组学流行病学队列 (ARISE)
  • 批准号:
    10724884
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Novel Digital Methods to Evaluate Functional and Pulmonary Outcomes following Pediatric Acute Respiratory Failure
评估小儿急性呼吸衰竭后功能和肺部结果的新型数字方法
  • 批准号:
    10724042
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Identifying Metabolic and Psychosocial Antecedents and Characteristics of youth-onset Type 2 diabetes (IMPACT DM)
确定青年发病 2 型糖尿病 (IMPACT DM) 的代谢和心理社会因素和特征
  • 批准号:
    10584028
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Mobile Health and Oral Testing to Optimize Tuberculosis Contact Tracing in Colombia
移动健康和口腔测试可优化哥伦比亚的结核病接触者追踪
  • 批准号:
    10667885
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Proud to Quit (P2Q): A Person-centered mobile technology intervention for smoking cessation among transgender adults
自豪地戒烟(P2Q):以人为本的移动技术干预跨性别成年人戒烟
  • 批准号:
    10647479
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Adapting Treatment Delivery to Improve Retention in Evidence-Based PTSD Treatment
调整治疗方式以提高循证 PTSD 治疗的保留率
  • 批准号:
    10539602
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
AppalTRuST Community Outreach and Participant Engagement Core
AppalTRUST 社区外展和参与者参与核心
  • 批准号:
    10665325
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Storytelling for Reducing Gap in AC Use in African Americans with Atrial Fibrillation
讲故事以减少患有心房颤动的非洲裔美国人使用交流电的差距
  • 批准号:
    10667019
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了