Identifying the Unknowns: Fragmentation Trees and Molecular Fingerprints
识别未知物:碎片树和分子指纹
基本信息
- 批准号:324792648
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Rapid identification of small compounds from small amounts of substance is of interest in many areas of biology and medicine such as metabolomics, natural products research, biomarker discovery, environmental research and diagnostics. Today, mass spectrometry (MS) is a key technology for the identification of small molecules. Over the last years, the amount and complexity of MS data has been growing rapidly. Computational analysis of such data is presumed to be one of the major technological hurdles in metabolomics and small molecule research today.About a decade ago, my group proposed fragmentation trees as a model for the fragmentation reactions in the measurement, and developed SIRIUS to compute such fragmentation trees. About five years ago, we developed CSI:FingerID for searching in molecular structure databases using tandem MS data, integrating fragmentation trees to boost search performance. As part of the previous funding period, we developed CANOPUS of the comprehensive assignment of compound classes without the need for structural elucidation, and ZODIAC for molecular formula assignments in complete datasets. We released version 4 of SIRIUS, which was named "method to watch" by Nature Methods, and demonstrated the power of our methods in biological case studies.In the second funding period, we will perform four diverse biological case studies, to demonstrate the power and versatility of our computational tools; we will continue our integration of LC-MS/MS processing into SIRIUS; we will develop Epimetheus for the validation of CSI:FingerID search results; we will perform in-depth evaluations of SIRIUS and CSI:FingerID; we will complete our work on separating chimeric spectra from the previous funding period; we will make ZODIAC faster and better; and finally, we will develop a method for network-based correction of molecular fingerprints, to further boost CSI:FingerID's performance.
从少量物质中快速鉴定小化合物在生物学和医学的许多领域都很有意义,例如代谢组学,天然产物研究,生物标志物发现,环境研究和诊断。 如今,质谱(MS)是鉴定小分子的关键技术。 在过去的几年里,MS数据的数量和复杂性一直在快速增长。 对这些数据的计算分析被认为是当今代谢组学和小分子研究的主要技术障碍之一。大约十年前,我的小组提出了碎片树作为测量中碎片反应的模型,并开发了SIRIUS来计算这种碎片树。大约五年前,我们开发了CSI:FingerID,用于使用串联MS数据在分子结构数据库中进行搜索,整合碎片树以提高搜索性能。作为上一个资助期的一部分,我们开发了CANOPUS,用于化合物类别的全面分配,而无需结构解析,以及ZODIAC,用于完整数据集中的分子式分配。我们发布了SIRIUS的第4版,被Nature Methods命名为“观察方法”,并展示了我们方法在生物案例研究中的强大功能。在第二个资助期内,我们将进行四个不同的生物案例研究,以展示我们计算工具的强大功能和多功能性;我们将继续将LC-MS/MS处理集成到SIRIUS中;我们将开发Epimetheus用于CSI的验证:FingerID搜索结果;我们将对SIRIUS和CSI:FingerID进行深入评估;我们将完成从上一个资助期分离嵌合光谱的工作;我们将使ZODIAC更快更好;最后,我们将开发一种基于网络的分子指纹校正方法,以进一步提高CSI:FingerID的性能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Sebastian Böcker其他文献
Professor Dr. Sebastian Böcker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Sebastian Böcker', 18)}}的其他基金
Transferable retention time prediction for Liquid Chromatography-Mass Spectrometry-based metabolomics
基于液相色谱-质谱的代谢组学的可转移保留时间预测
- 批准号:
425789784 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
Identifying the unknowns: towards structural elucidation of small molecules using mass spectrometry
识别未知数:利用质谱法阐明小分子的结构
- 批准号:
242259350 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grants
FlipCut Supertrees: Große und akkurate Phylogenien schneller bestimmen
FlipCut Supertrees:更快地确定大型且准确的系统发育
- 批准号:
211926079 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Grants
Algorithms for the Analysis of Approximate Gene Cluster (3AGC)
近似基因簇分析算法 (3AGC)
- 批准号:
156864160 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Research Grants
Identifying the unknowns: towards structural elucidation of small molecules using mass spectrometry
识别未知数:利用质谱法阐明小分子的结构
- 批准号:
164582891 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Research Grants
Parameterized Algorithmics for Bioinformatics
生物信息学参数化算法
- 批准号:
162571619 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Grants
Informatische Methoden für Massenspektrometrie in der Genomik
基因组学中质谱的信息方法
- 批准号:
5400926 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Independent Junior Research Groups
Project Harvester: Improving molecular fingerprint prediction through self-training
Project Harvester:通过自我训练改进分子指纹预测
- 批准号:
518231245 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Known Unknowns and Unknown Unknowns: Coping with Different States of Uncertainty in a Changing World
已知的未知数和未知的未知数:应对不断变化的世界中的不同不确定性状态
- 批准号:
ES/W013215/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Collaborative Research: Audio for Inclusion: Uncovering Marginalized Student Narratives to Provide Insight to Faculty on the Known Unknowns of Inclusion
合作研究:包容性音频:揭示边缘化学生的叙述,为教师提供有关包容性已知未知的见解
- 批准号:
2114241 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Audio for Inclusion: Uncovering Marginalized Student Narratives to Provide Insight to Faculty on the Known Unknowns of Inclusion
合作研究:包容性音频:揭示边缘化学生的叙述,为教师提供有关包容性已知未知的见解
- 批准号:
2114242 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
A comparative study of COVID-19 tests in the Democratic Republic of the Congo and Uganda: Situating the knowns and unknowns in the COVID-19 pandemic
刚果民主共和国和乌干达的 COVID-19 测试比较研究:了解 COVID-19 大流行中的已知和未知情况
- 批准号:
468184106 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Research Grants
CAREER:Exploring the Unknowns: Responses of Soil Microbial Communities to Increased Plant Functional Trait Diversity in Managed Ecosystems
职业:探索未知:土壤微生物群落对管理生态系统中植物功能性状多样性增加的反应
- 批准号:
1941714 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Continuing Grant
III: Medium: Quantifying the Unknown Unknowns for Data Integration
III:媒介:量化数据集成的未知因素
- 批准号:
2033792 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Continuing Grant
Chemometric approach to development of indicators for "toxic unknowns" in municipal wastewater
化学计量学方法开发城市废水中“有毒未知物”的指标
- 批准号:
19K21556 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
Inter-lab comparison of unknowns in polar metabolomics data
极性代谢组学数据中未知数的实验室间比较
- 批准号:
10397327 - 财政年份:2018
- 资助金额:
-- - 项目类别:
A method for elucidating unknowns by coupling traveling wave ion mobility spectrometry and the trajectory method
行波离子淌度谱与轨迹法耦合阐明未知物的方法
- 批准号:
16K12636 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
III: Medium: Quantifying the Unknown Unknowns for Data Integration
III:媒介:量化数据集成的未知因素
- 批准号:
1562657 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Continuing Grant