Polynomial Optimization and Finite Element Methods for Nonlinear Mechanics

非线性力学的多项式优化和有限元方法

基本信息

  • 批准号:
    2012658
  • 负责人:
  • 金额:
    $ 11.39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-15 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

The purpose of this interdisciplinary project is to devise a new generation of computational methods based on the combination of finite element methods and polynomial optimization to analyze problems in nonlinear mechanics, which often exhibit a complex evolution over time and space. Some examples include fluid flows, convection, and nonlinear elasticity. Computing these systems’ equilibria and producing a detailed diagnosis of their stability can be of notorious difficulty, but are of profound importance for elucidating the underlying physical mechanisms involved. These novel algorithms and rigorous analysis will allow the improvement of longstanding results in fluid mechanics related to the stability and dynamics of canonical shear flows. The results may lead to a deeper knowledge of turbulent losses in fluid systems, which could play a critical role in engineering problems within the transport and energy sectors.The project has two parts. The first part focuses on rigorously establishing the nonlinear stability of fluid flows with the goal of sharpening the lower bounds on the global stability threshold of shear flows (the largest Reynolds number under which any initial velocity field eventually converges to the laminar flow), such as plane Couette and plane Poiseuille flows. This will be achieved by carefully constructing Lyapunov functionals with the computer using polynomial sum-of-squares constraints and a special framework to pose the incompressible Navier-Stokes equations. The second part proposes the first connection between finite element analysis and sparse polynomial optimization. The combination has some nice theoretical implications, since finite element error analysis is deeply rooted in functional analysis and approximation theory, while the nascent field of polynomial optimization is closely tied to results in real algebraic geometry. From the practical standpoint, the computational methods developed will form a general framework to directly solve nonlinear partial differential equations (PDEs) in general domains while concurrently globally optimizing relevant quantities of interest (e.g. energy, heat transport, etc.). The resulting numerical methods provide a systematic pathway to compute exact coherent states of physical systems without using homotopic continuation. This is essential in problems where non-unique solutions do not bifurcate from a trivial state, like in plane Couette and pipe flows.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个跨学科项目的目的是设计一个新一代的计算方法的基础上结合有限元法和多项式优化分析问题的非线性力学,这往往表现出复杂的演变随着时间和空间。一些例子包括流体流动、对流和非线性弹性。计算这些系统的平衡并对其稳定性进行详细诊断可能是众所周知的困难,但对于阐明所涉及的潜在物理机制具有深远的重要性。这些新的算法和严格的分析,将允许在流体力学的稳定性和动力学的正则剪切流的长期结果的改善。这些结果可能会导致对流体系统中湍流损失的更深入了解,这可能在运输和能源部门的工程问题中发挥关键作用。该项目有两个部分。第一部分着重于严格建立流体流动的非线性稳定性,目标是锐化剪切流(任何初始速度场最终收敛到层流的最大雷诺数)的全局稳定性阈值的下限,例如平面Couette和平面Poiffille流。这将通过使用多项式平方和约束和一个特殊的框架,使不可压缩的Navier-Stokes方程与计算机仔细构建李雅普诺夫泛函。第二部分提出了有限元分析和稀疏多项式优化之间的第一个联系。这种结合具有一些很好的理论意义,因为有限元误差分析深深植根于泛函分析和逼近理论,而多项式优化的新生领域与真实的代数几何的结果密切相关。从实用的角度来看,开发的计算方法将形成一个通用框架,直接求解一般域中的非线性偏微分方程(PDE),同时全局优化相关的感兴趣的量(例如能量,热传输等)。由此产生的数值方法提供了一个系统的途径来计算物理系统的精确相干态,而不使用同伦连续。这对于非唯一解决方案不会从琐碎状态中分叉的问题至关重要,例如平面Couette和管道流动。该奖项反映了NSF的法定使命,并且通过使用基金会的知识价值和更广泛的评估被认为值得支持影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Federico Fuentes其他文献

Hepatic arachidonic acid metabolism is disrupted after hexachlorobenzene treatment.
六氯苯处理后,肝脏花生四烯酸代谢被破坏。
  • DOI:
    10.1016/j.taap.2004.09.001
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    S. C. Billi de Catabbi;A. Faletti;Federico Fuentes;L. C. San Martín de Viale;A. Cochón
  • 通讯作者:
    A. Cochón
Methodology to Minimise the Abandonment of Web Page Navigation Using the Tabu Search Algorithm
使用禁忌搜索算法最小化网页导航放弃的方法
  • DOI:
    10.5539/ass.v7n8p107
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Carmen Lozano;Federico Fuentes
  • 通讯作者:
    Federico Fuentes
A Systemic: Fuzzy Model to Evaluate the Social Impact of Microcredits
系统的:评估小额信贷社会影响的模糊模型
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Lozano;Federico Fuentes
  • 通讯作者:
    Federico Fuentes
Biologic Factors and Molecular Determinants in Inflammatory and Metabolic Diseases
炎症和代谢疾病的生物因素和分子决定因素
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. White;E. Burchard;Pagé C. Goddard;A. Nair;L. Baier;Federico Fuentes;J. Kopp
  • 通讯作者:
    J. Kopp
Yellow fever virus infection alters mitochondrial network dynamics and trigger IFN-I response via TLR2 pathway
黄热病病毒感染改变线粒体网络动态并通过 TLR2 途径触发 I 型干扰素反应
  • DOI:
    10.1016/j.intimp.2025.114699
  • 发表时间:
    2025-06-05
  • 期刊:
  • 影响因子:
    4.700
  • 作者:
    Carla Tomatis;Nancy Charo;María F. Ferrer;Silvia Aquila;Federico Fuentes;María L. Scalise;Mara C.A.M. Aguiar;Gabriel Valdivieso;Eugenio A. Carrera Silva;Ricardo M. Gómez
  • 通讯作者:
    Ricardo M. Gómez

Federico Fuentes的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
  • 批准号:
    70601028
  • 批准年份:
    2006
  • 资助金额:
    7.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of detailed finite element analysis system for performance-based design and optimization of steel frames and base-isolation devises
开发详细的有限元分析系统,用于钢框架和基础隔离装置的基于性能的设计和优化
  • 批准号:
    19H02286
  • 财政年份:
    2019
  • 资助金额:
    $ 11.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Nonsmooth Multi-Level Optimization Algorithms for Energetic Formulations of Finite-Strain Elastoplasticity
有限应变弹塑性能量公式的非光滑多级优化算法
  • 批准号:
    423764152
  • 财政年份:
    2019
  • 资助金额:
    $ 11.39万
  • 项目类别:
    Priority Programmes
Development and applications of optimization designing system for dental prosthesis via dynamic finite element analysis using individual clinical data of oral function
利用个体口腔功能临床数据进行动态有限元分析的牙修复体优化设计系统的开发与应用
  • 批准号:
    18K17159
  • 财政年份:
    2018
  • 资助金额:
    $ 11.39万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Automotive weight reduction through nonlinear finite element modeling, fatigue analysis, and optimization of hot stamped ultra-high strength steels
通过非线性有限元建模、疲劳分析和热冲压超高强度钢的优化来减轻汽车重量
  • 批准号:
    503670-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 11.39万
  • 项目类别:
    Collaborative Research and Development Grants
Fundamental research on finite length analysis in information theory and optimization theory for practical, reliable, and highly efficient communications
信息论有限长度分析和实用、可靠、高效通信的优化理论基础研究
  • 批准号:
    17K06446
  • 财政年份:
    2017
  • 资助金额:
    $ 11.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Automotive weight reduction through nonlinear finite element modeling, fatigue analysis, and optimization of hot stamped ultra-high strength steels
通过非线性有限元建模、疲劳分析和热冲压超高强度钢的优化来减轻汽车重量
  • 批准号:
    503670-2016
  • 财政年份:
    2017
  • 资助金额:
    $ 11.39万
  • 项目类别:
    Collaborative Research and Development Grants
Geometrically unfitted finite element methods for inverse identification of geometries and shape optimization
用于几何反演和形状优化的几何不拟合有限元方法
  • 批准号:
    EP/P01576X/1
  • 财政年份:
    2017
  • 资助金额:
    $ 11.39万
  • 项目类别:
    Research Grant
Optimization of sampled-data systems with finite-dimensional linear continuousperiodic process and delay
具有有限维线性连续周期过程和延迟的采样数据系统的优化
  • 批准号:
    316189657
  • 财政年份:
    2016
  • 资助金额:
    $ 11.39万
  • 项目类别:
    Research Grants
Stress-Based Methods for Variational Inequalities in Solid Mechanics: Finite Element Discretization and Solution by Hierarchical Optimization
固体力学中基于应力的变分不等式方法:有限元离散化和分层优化求解
  • 批准号:
    314141182
  • 财政年份:
    2016
  • 资助金额:
    $ 11.39万
  • 项目类别:
    Priority Programmes
Automotive weight reduction through nonlinear finite element modeling, fatigue analysis, and optimization of hot stamped ultra-high strength steels
通过非线性有限元建模、疲劳分析和热冲压超高强度钢的优化来减轻汽车重量
  • 批准号:
    503670-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 11.39万
  • 项目类别:
    Collaborative Research and Development Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了