Geometrically unfitted finite element methods for inverse identification of geometries and shape optimization

用于几何反演和形状优化的几何不拟合有限元方法

基本信息

  • 批准号:
    EP/P01576X/1
  • 负责人:
  • 金额:
    $ 60.09万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

Design in manufacturing has traditionally been made by engineers, by combining results of computation, experiments and experience. In certain situations however the complexity of the problem is such that it is impossible to handle the effect of all the constraints or physical effects this way. Consider for instance the optimal shape of a landing gear of an aircraft that will both sustain strong air flow and the mechanical impacts of take off and landing, or an implant, for instance an artificial heart valve, that must have certain properties, but where experiments in vivo are very difficult to carry out. In such cases where several physical effects compete in shaping the optimal design the classical approach may be too simplistic and lead to suboptimal results in the form of unnecessarily costly or inefficient designs. Another situation where an unknown shape or boundary has to be reconstructed is when one has measurements, for instance using acoustic wave scattering, and the objective is to identify a geometry, this could be a baby in the womb, something hidden under ground or in the sea. Both in the above shape optimization problem and in the inverse reconstruction problem, one may apply known physical laws in the mathematical form of partial differential equations, solve the equations repeatedly in an optimization framework and find the geometry that either optimizes the performance of the object or best fits with the measured data. This however is a complex undertaking, where every step of the procedure is fraught with difficulties. To make the computer simulation, first of all the geometry has to be decomposed into smaller entities, let us say cubes or tetrahedra, the so-called computational mesh. On the mesh the solution of the physical problem is constructed and evolved through the optimization. However since the mesh is defined by the geometry, as the geometry changes, so must the mesh. The problem is that with the mesh changes the data structures as well the properties of the computational methods. Since meshing is costly and the different building blocks of the optimization traditionally have been studied separately it has so far been difficult to design optimization procedure that are efficient and where it is possible to assess the quality of the result. In this project our aim is to draw from the experiences of a previous EPSRC funded project "Computational Methods for Multiphysics Interface Problems" where we designed methods in which the geometries were independent of the computational mesh used. In this framework, there still is a computational mesh, but it does not need to change as the geometry changes. Instead all the geometry information is built in to the computational methods that solves the equations describing the physical model. This approach proposes a holistic perspective to shape optimisation and inverse identification of geometries, where all the different steps of the optimisation algorithm can be shown to have similar properties with respect to accuracy and efficiency, avoiding the "weakest link" problem, where some poorly performing method destroys the performance of the whole algorithm. The methods proposed in the project are sufficiently general to be applied to a very large range of problems and mathematically sound so that mathematical analysis may be used to prove that the methods are optimal both from the point of view of accuracy and efficiency.
传统上,制造业的设计是由工程师通过结合计算、实验和经验的结果来完成的。然而,在某些情况下,由于问题的复杂性,不可能以这种方式处理所有约束或物理效应的影响。例如,考虑飞机的起落架的最佳形状,其将维持强气流和起飞和着陆的机械冲击,或者植入物,例如人造心脏瓣膜,其必须具有某些特性,但体内实验非常难以进行。在这种情况下,几个物理效应在形成最佳设计中竞争,经典方法可能过于简单化,并以不必要的昂贵或低效设计的形式导致次优结果。另一种需要重建未知形状或边界的情况是,当人们进行测量时,例如使用声波散射,目标是识别几何形状,这可能是子宫中的婴儿,隐藏在地下或海洋中的东西。在上述形状优化问题和逆重建问题中,可以以偏微分方程的数学形式应用已知的物理定律,在优化框架中重复求解方程,并找到优化物体性能或最佳拟合测量数据的几何形状。然而,这是一项复杂的工作,程序的每一步都充满困难。为了进行计算机模拟,首先必须将几何体分解成更小的实体,比如立方体或四面体,即所谓的计算网格。在网格上构造物理问题的解并通过优化演化。但是,由于网格是由几何体定义的,因此随着几何体的变化,网格也必须变化。问题是,随着网格的变化,数据结构以及计算方法的属性。由于网格划分是昂贵的,并且传统上已经分别研究了优化的不同构建块,因此到目前为止,很难设计出有效的优化过程,并且可以评估结果的质量。在这个项目中,我们的目标是从以前的EPSRC资助的项目“多物理场接口问题的计算方法”的经验,我们设计的方法中的几何形状是独立的计算网格使用。在这个框架中,仍然存在计算网格,但它不需要随着几何形状的变化而变化。相反,所有的几何信息都内置于求解描述物理模型的方程的计算方法中。这种方法提出了一个整体的角度来形状优化和逆向识别的几何形状,其中的优化算法的所有不同的步骤可以被证明具有类似的属性方面的准确性和效率,避免了“最薄弱环节”的问题,其中一些表现不佳的方法破坏了整个算法的性能。在该项目中提出的方法是足够的一般适用于一个非常大的范围内的问题和数学的声音,使数学分析可以用来证明,无论是从准确性和效率的角度来看,该方法是最佳的。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hybrid coupling of finite element and boundary element methods using Nitsche's method and the Calderon projection
使用 Nitsche 方法和 Calderon 投影的有限元和边界元方法的混合耦合
  • DOI:
    10.1007/s11075-022-01289-9
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Betcke T
  • 通讯作者:
    Betcke T
Fictitious domain method with boundary value correction using penalty-free Nitsche method
  • DOI:
    10.1515/jnma-2016-1103
  • 发表时间:
    2016-10
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Thomas Boiveau;E. Burman;S. Claus;M. Larson
  • 通讯作者:
    Thomas Boiveau;E. Burman;S. Claus;M. Larson
Boundary Element Methods for Helmholtz Problems With Weakly Imposed Boundary Conditions
弱施加边界条件亥姆霍兹问题的边界元方法
Well-posedness and H(div)-conforming finite element approximation of a linearised model for inviscid incompressible flow
无粘不可压缩流线性化模型的适定性和 H(div) 一致有限元近似
An a posteriori error estimate of the outer normal derivative using dual weights
  • DOI:
    10.1137/20m1358219
  • 发表时间:
    2020-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Bertoluzza;E. Burman;Cuiyu He
  • 通讯作者:
    S. Bertoluzza;E. Burman;Cuiyu He
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Erik Burman其他文献

Extension operators for trimmed spline spaces
修剪样条空间的扩展算子
Unique continuation for the wave equation based on a discontinuous Galerkin time discretization
基于不连续伽辽金时间离散化的波动方程的唯一延拓
  • DOI:
    10.48550/arxiv.2405.04615
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Erik Burman;Janosch Preuss
  • 通讯作者:
    Janosch Preuss
A cut finite element method for elliptic bulk problems with embedded surfaces
  • DOI:
    10.1007/s13137-019-0120-z
  • 发表时间:
    2019-01-29
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Erik Burman;Peter Hansbo;Mats G. Larson;David Samvin
  • 通讯作者:
    David Samvin
Solving the unique continuation problem for Schrödinger equations with low regularity solutions using a stabilized finite element method
使用稳定有限元方法求解具有低正则解的薛定谔方程的唯一连续问题
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Erik Burman;Mingfei Lu;L. Oksanen
  • 通讯作者:
    L. Oksanen
Hybridized augmented Lagrangian methods for contact problems
用于接触问题的混合增广拉格朗日方法

Erik Burman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Erik Burman', 18)}}的其他基金

Continuous finite element methods for under resolved turbulence in compressible flow
可压缩流中未解析湍流的连续有限元方法
  • 批准号:
    EP/X042650/1
  • 财政年份:
    2024
  • 资助金额:
    $ 60.09万
  • 项目类别:
    Research Grant
Quantitative estimates of discretisation and modelling errors in variational data assimilation for incompressible flows
不可压缩流变分数据同化中离散化和建模误差的定量估计
  • 批准号:
    EP/T033126/1
  • 财政年份:
    2021
  • 资助金额:
    $ 60.09万
  • 项目类别:
    Research Grant
Computational methods for inverse problems subject to wave equations in heterogeneous media
异质介质中波动方程反问题的计算方法
  • 批准号:
    EP/V050400/1
  • 财政年份:
    2021
  • 资助金额:
    $ 60.09万
  • 项目类别:
    Research Grant
Computational methods for multiphysics interface problems
多物理场接口问题的计算方法
  • 批准号:
    EP/J002313/2
  • 财政年份:
    2013
  • 资助金额:
    $ 60.09万
  • 项目类别:
    Research Grant
Computational methods for multiphysics interface problems
多物理场接口问题的计算方法
  • 批准号:
    EP/J002313/1
  • 财政年份:
    2012
  • 资助金额:
    $ 60.09万
  • 项目类别:
    Research Grant

相似海外基金

Collaborative Research: Elements: EXHUME: Extraction for High-Order Unfitted Finite Element Methods
合作研究:Elements:EXHUME:高阶未拟合有限元方法的提取
  • 批准号:
    2103939
  • 财政年份:
    2021
  • 资助金额:
    $ 60.09万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: EXHUME: Extraction for High-Order Unfitted Finite Element Methods
合作研究:Elements:EXHUME:高阶未拟合有限元方法的提取
  • 批准号:
    2104106
  • 财政年份:
    2021
  • 资助金额:
    $ 60.09万
  • 项目类别:
    Standard Grant
Unfitted Finite Element Methods for Partial Differential Equations on Evolving Surfaces and Coupled Surface-Bulk Problems
演化曲面偏微分方程和耦合面体问题的不拟合有限元方法
  • 批准号:
    1717516
  • 财政年份:
    2017
  • 资助金额:
    $ 60.09万
  • 项目类别:
    Standard Grant
Higher order Unfitted Finite Element Methods for moving domain problems
移动域问题的高阶不拟合有限元方法
  • 批准号:
    319609890
  • 财政年份:
    2016
  • 资助金额:
    $ 60.09万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了