Stress-Based Methods for Variational Inequalities in Solid Mechanics: Finite Element Discretization and Solution by Hierarchical Optimization
固体力学中基于应力的变分不等式方法:有限元离散化和分层优化求解
基本信息
- 批准号:314141182
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2016
- 资助国家:德国
- 起止时间:2015-12-31 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this project is the extension of the methods developed during the first phase based on the dual formulation of mostly static (quasi-)variational inequalities to time-dependent ones. Again, adding the dual variable as a separate field leads to highly accurate approximations for the stresses and for the associated surface traction forces compared to standard primal discretizations. The conservation properties of these methods are particularly advantageous for time-dependent problems.Adaptive stress-based methods will be developed which employ displacement reconstructions in the a posteriori error estimation. In combination with suitably constructed multigrid solvers, this will lead to a very efficient overall treatment of such (quasi-)variational inequalities. These methods will first be studied in the context of quasi-static problems and then extended to dynamic frictional contact. For the quasi-static case, a time-stepping approach is initially used. This has the advantage that the techniques already developed during the first phase of the SPP can be used for the spatial adaptivity. This includes the a posteriori error estimators as well as the monotone multilevel method for the stress spaces.The ultimate goal of this second project phase does, however, consist of the development of adaptive space-time discretizations for time-dependent (quasi-)variational inequalities. To this end, techniques which are already well understood for standard parabolic problems will be appropriately modified for the time-dependent frictional contact problems. A first-order system least squares functional is used as a starting point for a posteriori estimation of the space-time error and associated adaptivity. For dynamical frictional contact, more challenging stability issues need to be addressed which can be done using expertise from earlier work on that topic. Finally, space-time multigrid methods will be developed for the arising space-time finite element formulations leading to a highly efficient overall solution strategy.
这个项目的目标是扩展在第一阶段开发的方法,这些方法是基于大多数静态(拟)变分不等式的对偶公式到时间相关的方法。再一次,与标准原始离散化相比,将双变量作为单独的场添加到应力和相关表面牵引力的近似中,可以获得高度精确的近似。这些方法的守恒性质对时变问题特别有利。将开发基于应力的自适应方法,该方法采用位移重建进行后验误差估计。与适当构造的多网格求解器相结合,这将导致对此类(拟)变分不等式的非常有效的整体处理。这些方法将首先在准静态问题的背景下进行研究,然后扩展到动态摩擦接触。对于准静态情况,最初采用时间步进方法。这样做的好处是,在SPP的第一阶段已经开发的技术可以用于空间适应性。这包括后验误差估计以及应力空间的单调多电平方法。然而,这个项目的第二个阶段的最终目标确实包括对时间相关(拟)变分不等式的自适应时空离散化的发展。为此,对于标准抛物线问题已经很好理解的技术,将适当地修改用于随时间变化的摩擦接触问题。一阶系统最小二乘泛函被用作时空误差和相关自适应的后验估计的起点。对于动态摩擦接触,需要解决更具挑战性的稳定性问题,这些问题可以使用该主题早期工作的专业知识来解决。最后,将针对出现的时空有限元公式开发时空多重网格方法,从而形成高效的整体求解策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Gerhard Starke其他文献
Professor Dr. Gerhard Starke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Gerhard Starke', 18)}}的其他基金
Nichtisotherme gekoppelte Strömungs- und Deformationsprozesse in teilgesättigten porösen Medien
部分饱和多孔介质中的非等温耦合流动和变形过程
- 批准号:
5371293 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Research Grants
Adaptive methods for the numerical simulation of depth-averaged surface flow
深度平均表面流数值模拟的自适应方法
- 批准号:
5241286 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Research Grants
Iterative Verfahren für nichtlineare Finite-Element-Ausgleichsprobleme
非线性有限元平衡问题的迭代方法
- 批准号:
5135194 - 财政年份:1998
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Incentive and governance schenism study of corporate green washing behavior in China: Based on an integiated view of econfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
A study on prototype flexible multifunctional graphene foam-based sensing grid (柔性多功能石墨烯泡沫传感网格原型研究)
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
基于tag-based单细胞转录组测序解析造血干细胞发育的可变剪接
- 批准号:81900115
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
应用Agent-Based-Model研究围术期单剂量地塞米松对手术切口愈合的影响及机制
- 批准号:81771933
- 批准年份:2017
- 资助金额:50.0 万元
- 项目类别:面上项目
Reality-based Interaction用户界面模型和评估方法研究
- 批准号:61170182
- 批准年份:2011
- 资助金额:57.0 万元
- 项目类别:面上项目
Multistage,haplotype and functional tests-based FCAR 基因和IgA肾病相关关系研究
- 批准号:30771013
- 批准年份:2007
- 资助金额:30.0 万元
- 项目类别:面上项目
差异蛋白质组技术结合Array-based CGH 寻找骨肉瘤分子标志物
- 批准号:30470665
- 批准年份:2004
- 资助金额:8.0 万元
- 项目类别:面上项目
GaN-based稀磁半导体材料与自旋电子共振隧穿器件的研究
- 批准号:60376005
- 批准年份:2003
- 资助金额:20.0 万元
- 项目类别:面上项目
相似海外基金
Impact of Urban Environmental Factors on Momentary Subjective Wellbeing (SWB) using Smartphone-Based Experience Sampling Methods
使用基于智能手机的体验采样方法研究城市环境因素对瞬时主观幸福感 (SWB) 的影响
- 批准号:
2750689 - 财政年份:2025
- 资助金额:
-- - 项目类别:
Studentship
ProtFunAI: AI based methods for functional annotation of proteins in crop genomes
ProtFunAI:基于人工智能的作物基因组蛋白质功能注释方法
- 批准号:
BB/Y514044/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
CAREER: User-Based Simulation Methods for Quantifying Sources of Error and Bias in Recommender Systems
职业:基于用户的模拟方法,用于量化推荐系统中的错误和偏差来源
- 批准号:
2415042 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Risk-Based Methods for Robust, Adaptive, and Equitable Flood Risk Management in a Changing Climate
职业:在气候变化中实现稳健、适应性和公平的洪水风险管理的基于风险的方法
- 批准号:
2238060 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Partitioning-Based Learning Methods for Treatment Effect Estimation and Inference
基于分区的治疗效果估计和推理学习方法
- 批准号:
2241575 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Overcoming the limits of anaerobic soil disinfestations by developing innovative methods based on scientific evidences
通过开发基于科学证据的创新方法来克服厌氧土壤灭虫的局限性
- 批准号:
23H02353 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Establishment of objective diagnostic methods according to periodontal pathology based on biomarkers in gingival sulcus exudate and PISA.
基于龈沟渗出物生物标志物和PISA,根据牙周病理学建立客观诊断方法。
- 批准号:
23K16238 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Topological-based numerical methods for real-world problems
针对现实世界问题的基于拓扑的数值方法
- 批准号:
2882199 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Development of Theoretical Design Methods of Catalysts Based on Electronic Structure Theory and Their Applications to Design and Development of High-Performance Molecular Catalysts
基于电子结构理论的催化剂理论设计方法发展及其在高性能分子催化剂设计与开发中的应用
- 批准号:
22KJ0003 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Leveraging Causal Inference and Machine Learning Methods to Advance Evidence-Based Maternal Care and Improve Newborn Health Outcomes
利用因果推理和机器学习方法推进循证孕产妇护理并改善新生儿健康结果
- 批准号:
10604856 - 财政年份:2023
- 资助金额:
-- - 项目类别:














{{item.name}}会员




