SCH:INT: Collaborative Research: Deep Sense: Interpretable Deep Learning for Zero-effort Phenotype Sensing and Its Application to Sleep Medicine
SCH:INT:合作研究:深度感知:零努力表型感知的可解释深度学习及其在睡眠医学中的应用
基本信息
- 批准号:2014391
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Sleep represents one third of everyone’s life and affects the quality and the health of everyone’s life. Traditionally, long-term characteristics of sleep patterns (sleep phenotypes) are largely unknown due to the lack of convenient monitoring devices and automatic algorithms. Recently, massive health sensing data such as activity data, electroencephalogram, respiratory monitoring data and electrocardiography are being collected in clinics and at home, which brings unprecedented opportunities for understanding sleep phenotypes outside clinics. However, there are tremendous challenges to translate these noisy and unreliable multimodal sensing data into accurate phenotypes such as sleep stages and apnea events. Beyond sleep, many neurological conditions such as Alzheimer’s and Parkinson’s all expect objective tracking of long-term disease progression, which is currently impossible. This project will provide the computational capability to conduct phenotype tracking at home with the focus on sleep phenotypes. Machine learning methods and software will be developed to conduct accurate phenotyping of sleep with minimal effort on sensor instrumentation, data collection and analysis. This project aims at developing DeepSense, a deep learning toolbox to model massive data streams including in-clinic monitoring data such as polysomnography and novel radio frequency signals from a wireless sensing device. The research team will develop accurate deep learning methods to automate sleep monitoring using polysomnography data. They will invent adversarial deep learning methods for modeling radio frequency signals and leverage large historical polysomnography data to help improve models for radio frequency signals. They will develop interpretable models that leverage and expand medical knowledge on sleep phenotypes. Finally, all the proposed models will be validated through a prospective study with a goal of automating manual sleep studies and assessing the feasibility of sleep studies via radio frequency signal data. The research team plans to release the open-source software and large datasets from this project that can benefit computer science, engineering and medical community.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
睡眠占每个人生命的三分之一,影响着每个人的生活质量和健康。传统上,由于缺乏方便的监测设备和自动算法,睡眠模式的长期特征(睡眠表型)在很大程度上是未知的。 最近,活动数据、脑电图、呼吸监测数据和心电图等海量健康感知数据正在诊所和家庭中收集,这为了解诊所外的睡眠表型带来了前所未有的机会。然而,将这些噪声和不可靠的多模态感测数据转化为准确的表型(例如睡眠阶段和呼吸暂停事件)存在巨大的挑战。除了睡眠,许多神经系统疾病,如阿尔茨海默氏症和帕金森氏症,都希望客观跟踪长期疾病进展,这是目前不可能的。该项目将提供计算能力,以在家中进行表型跟踪,重点是睡眠表型。将开发机器学习方法和软件,以在传感器仪器、数据收集和分析上花费最少的努力来进行准确的睡眠表型分析。该项目旨在开发DeepSense,这是一种深度学习工具箱,用于对大量数据流进行建模,包括多导睡眠图等临床监测数据和来自无线传感设备的新型射频信号。研究团队将开发精确的深度学习方法,使用多导睡眠图数据自动进行睡眠监测。他们将发明对抗性深度学习方法来建模射频信号,并利用大量历史多导睡眠图数据来帮助改进射频信号模型。他们将开发可解释的模型,利用和扩展睡眠表型的医学知识。最后,所有提出的模型将通过一项前瞻性研究进行验证,目标是自动化手动睡眠研究,并通过射频信号数据评估睡眠研究的可行性。该研究团队计划发布该项目的开源软件和大型数据集,以造福计算机科学、工程和医学界。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Artificial intelligence-enabled detection and assessment of Parkinson’s disease
基于人工智能的帕金森病检测和评估
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:82.9
- 作者:Yuzhe Yang, Yuan Yuan
- 通讯作者:Yuzhe Yang, Yuan Yuan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dina Katabi其他文献
Accelerating Parkinson’s Disease drug development with federated learning approaches
利用联邦学习方法加速帕金森病药物开发
- DOI:
10.1038/s41531-024-00837-5 - 发表时间:
2024-11-21 - 期刊:
- 影响因子:8.200
- 作者:
Amit Khanna;Jamie Adams;Chrystalina Antoniades;Bastiaan R. Bloem;Camille Carroll;Jesse Cedarbaum;Joshua Cosman;David T. Dexter;Marissa F. Dockendorf;Jeremy Edgerton;Laura Gaetano;Erkuden Goikoetxea;Derek Hill;Fay Horak;Elena S. Izmailova;Tairmae Kangarloo;Dina Katabi;Catherine Kopil;Michael Lindemann;Jennifer Mammen;Kenneth Marek;Kevin McFarthing;Anat Mirelman;Martijn Muller;Gennaro Pagano;M. Judith Peterschmitt;Jie Ren;Lynn Rochester;Sakshi Sardar;Andrew Siderowf;Tanya Simuni;Diane Stephenson;Christine Swanson-Fischer;John A. Wagner;Graham B. Jones - 通讯作者:
Graham B. Jones
354 ASSESSMENT OF A PASSIVE MONITORING DEVICE TO TRACK FLARES IN INDIVIDUALS WITH CROHN'S DISEASE
- DOI:
10.1016/s0016-5085(23)01107-1 - 发表时间:
2023-05-01 - 期刊:
- 影响因子:
- 作者:
Joshua Korzenik;Punyanganie S. de Silva;Giovanni Traverso;Gila Sasson;Maia Paul;Rayna Haque;Sophia J. Griffin;Katerina Gusarova;Rachel Levy;Curtis P. DeBisschop;Rumen Hristov;Rahul Hariharan Shankar;Dina Katabi - 通讯作者:
Dina Katabi
Digital Phenotyping of Autoimmune Diseases Using Non-Contact Radio Frequency Sensing: A Longitudinal Study Comparing Systemic Lupus Erythematosus and Healthy Participants
使用非接触式射频传感对自身免疫性疾病进行数字表型分析:比较系统性红斑狼疮和健康参与者的纵向研究
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
M. Boukhechba;Elena Reynoso;Ioannis Pandis;Kenneth Mosca;Rumen Hristov;Shichao Yue;Yuqing Ai;Hariharan Rahul;Dina Katabi;Mark Morris;Stefan Avey - 通讯作者:
Stefan Avey
Artificial Intelligence Detects Antidepressant Use From Nocturnal Breathing
人工智能通过夜间呼吸检测抗抑郁药的使用情况
- DOI:
10.1016/j.biopsych.2025.02.069 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:9.000
- 作者:
Dina Katabi - 通讯作者:
Dina Katabi
IDENTIFICATION AND EVALUATION OF BEHAVIORAL SYMPTOMS IN DEMENTIA USING PASSIVE RADIO SENSING AND MACHINE LEARNING
- DOI:
10.1016/j.jagp.2019.01.078 - 发表时间:
2019-03-01 - 期刊:
- 影响因子:
- 作者:
Ipsit Vahia;Zach Kabelac;Usman Munir;Kreshnik Hoti;Rose May;Patrick Monette;Dina Katabi - 通讯作者:
Dina Katabi
Dina Katabi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dina Katabi', 18)}}的其他基金
Realtime GHz-Wide Spectrum Sensing and Acquisition Using the Sparse FFT
使用稀疏 FFT 进行实时 GHz 宽频谱感测和采集
- 批准号:
1343336 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
NeTS: Small: Encryption on the Air: Non-Invasive Security for Wireless Medical Devices
NeTS:小型:空中加密:无线医疗设备的非侵入式安全
- 批准号:
1116864 - 财政年份:2011
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
NeTS: Small: Random Access Heterogeneous MIMO Networks
NeTS:小型:随机接入异构 MIMO 网络
- 批准号:
1117194 - 财政年份:2011
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
NeTS-ANET: One Video Multicast to Serve Diverse Wireless Receivers
NeTS-ANET:一种视频多播服务于多种无线接收器
- 批准号:
0831664 - 财政年份:2008
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
NeTS-NEDG: Adaptive Wideband Networks for the Multimedia Home
NeTS-NEDG:多媒体家庭的自适应宽带网络
- 批准号:
0831660 - 财政年份:2008
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
NeTS-NBD: XORs in the Air: Practical Wireless Network Coding
NeTS-NBD:空中异或:实用无线网络编码
- 批准号:
0627021 - 财政年份:2006
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Adaptive Reliable and Self-Managed Networks
职业:自适应可靠和自我管理网络
- 批准号:
0448287 - 财政年份:2005
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
相似国自然基金
内源性逆转录病毒MER65-int调控人类胎
盘发育与子宫内膜重塑的功能研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
隐秘重组信号序列INT-RSS在T细胞受体基因Tcra重排中的功能和机制研究
- 批准号:32370939
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
HPV16 E7 通过 Int1 蛋白调控 Wnt 信号通路调节肿瘤局部树突状细胞活性
- 批准号:LQ22H160033
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
选择性PPARγ激动剂INT131调控适应性产热和AD-MSCs分化成棕色样脂肪细胞的机制研究
- 批准号:81903680
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
INT复合物调节U snRNA 3'加工的结构基础
- 批准号:31800624
- 批准年份:2018
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
沉默Int6基因的骨髓间充质干细胞复合生物支架构建血管化腹股沟疝补片及其促补片血管化机制
- 批准号:81371698
- 批准年份:2013
- 资助金额:70.0 万元
- 项目类别:面上项目
HIF/Int6调控迟发型EPC体外增殖的机制及其治疗重度子痫前期的可行性
- 批准号:81100439
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
SCH: INT: Collaborative Research: An Intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
- 批准号:
2343183 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: DeepSense: Interpretable Deep Learning for Zero-effort Phenotype Sensing and Its Application to Sleep Medicine
SCH:INT:合作研究:DeepSense:零努力表型感知的可解释深度学习及其在睡眠医学中的应用
- 批准号:
2313481 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: Context-Adaptive Multimodal Informatics for Psychiatric Discharge Planning
SCH:INT:合作研究:用于精神病出院计划的上下文自适应多模态信息学
- 批准号:
10573225 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
SCH: INT: Collaborative Research: Context-Adaptive Multimodal Informatics for Psychiatric Discharge Planning
SCH:INT:合作研究:用于精神病出院计划的上下文自适应多模态信息学
- 批准号:
10392429 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
SCH: INT: Collaborative Research: Using Multi-Stage Learning to Prioritize Mental Health
SCH:INT:协作研究:利用多阶段学习优先考虑心理健康
- 批准号:
2124270 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: Privacy-Preserving Federated Transfer Learning for Early Acute Kidney Injury Risk Prediction
SCH:INT:合作研究:用于早期急性肾损伤风险预测的隐私保护联合迁移学习
- 批准号:
2014554 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: Privacy-Preserving Federated Transfer Learning for Early Acute Kidney Injury Risk Prediction
SCH:INT:合作研究:用于早期急性肾损伤风险预测的隐私保护联合迁移学习
- 批准号:
2014552 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: An intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
- 批准号:
2019389 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: An intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
- 批准号:
2013651 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: An Intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
- 批准号:
2013122 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant