Collaborative Research: Harnessing Crystalline Phase Transition in 2D Materials for Ultra-Low-Power and Flexible Electronics

合作研究:利用二维材料中的晶体相变实现超低功耗和柔性电子产品

基本信息

  • 批准号:
    2015670
  • 负责人:
  • 金额:
    $ 13.71万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Rapid advances in wearable electronics and mobile device technologies have made it crucial and imperative to explore and demonstrate new semiconductor devices with ultralow-power, fast speed, small size, and flexible mechanical properties. Atomic layer semiconductors and their two-dimensional nanostructures isolated from bulk, layered transition metal dichalcogenide crystals are promising for many applications in nanoelectronics, nanophotonics, and nanoelectromechanical systems, due to their unconventional and exceptional electrical, optical and mechanical properties. Controlled crystalline phase transition, which occurs in certain atomic layer semiconductor materials, and its accompanying semiconductor-to-metal transition, have the potential to eventually lead to important device and circuit applications that permit advanced computing, memory, and sensing with ultralow power consumption. This project combines experimental, theoretical, and simulation approaches to explore, model, and demonstrate a new class of atomically thin, mechanically flexible electronic devices based on the mechanisms of controlled crystalline phase transition in atomic layer semiconductors. The ultralow power and mechanical flexible properties of the devices based on phase transition in atomically thin semiconductors materials make them attractive in future flexible electronics, internet-of-things, and computer technologies. In this project, the PIs will develop and disseminate course modules and simulation tools, and timely employ the research activities to recruit and broaden participation from underrepresented students from high school to graduate student levels, at both Case Western Reserve University and University of Florida. The goals of this collaborative research project are to develop the essential knowledge base for, and to pave the way toward, understanding and harvesting gate-voltage and strain-controlled crystalline phase transition in two-dimensional transition metal dichalcogenide materials for ultralow-power switching devices and flexible electronics applications. The proposed research activities include: (i) Develop a computationally efficient and physically meaningful multiscale simulation platform to simulate crystalline phase transition phenomena in transition metal dichalcogenide crystals induced by a gate voltage or strain; (ii) Experimentally explore strain and gate-voltage-induced phase transition in transition metal dichalcogenide materials; (iii) Couple experimental characterization of the crystalline phase transition in transition metal dichalcogenide devices with theoretical work to develop phase transition flexible electronics and switching devices; (iv) Engineer the phase-transition switch mechanisms in rationally designed device platforms, to achieve steep sub-threshold slope and ultralow-power logic switches. This experiment-theory collaborative team will use advanced nanodevice fabrication, characterization, modeling and simulation techniques to explore and understand how phase transition in transition metal dichalcogenide materials can be tailored, controlled, and utilized for ultralow power and flexible electronics applications. The study will deepen fundamental understanding of phase change phenomena in atomic layer semiconductors, and develop promising device concepts and models to harness gate-voltage and strain-controlled crystalline phase transition in atomically thin semiconductors, to enable future devices and systems for computing, sensing, and communication.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
可穿戴电子设备和移动设备技术的快速进步使探索和演示具有超功率,快速,小尺寸和柔性机械性能的新的半导体设备至关重要。 由于它们在纳米电子,纳米机械和纳米机械系统中,由于它们在纳米电子学,纳米机械中的许多应用,由于它们在纳米电子,具有非常规和非同规性和出色的电气,光学,光学和机械性质,因此在许多分层金属二甲藻元素晶体中分离出的原子层半导体及其二维纳米结构。受控的结晶相变,发生在某些原子层半导体材料及其随附的半导体到金属过渡中,有可能最终导致重要的设备和电路应用,这些设备和电路应用允许高级计算,记忆力和超出功率消耗。该项目结合了基于原子层半导体中受控的晶体相变的机制,结合了探索,模型和演示一类新的原子较薄,机械柔性电子设备的新的实验,理论和仿真方法。基于原子较薄的半导体材料中相过渡的设备的超低功率和机械柔性特性使它们在未来的柔性电子,图像和计算机技术中具有吸引力。在该项目中,PI将开发和传播课程模块和模拟工具,并及时采用研究活动来招募和扩大来自高中的人数不足的学生到研究生级别的学生级别的参与。 该协作研究项目的目标是为在二维过渡金属二进制金属元素材料中开发,理解和收集闸门 - 电压和应变控制的晶体相变的方式,为超级功率开关设备和灵活的电子应用铺平道路。拟议的研究活动包括:(i)开发一种计算高效且具有物理意义的多尺度模拟平台,以模拟通过栅极电压或应变诱导的过渡金属二甲藻元化晶体中的晶体相变现象; (ii)实验探索过渡金属二分法材料中的应变和栅极诱导的相变; (iii)夫妇在过渡金属二进制元基因设备中结晶相变的实验表征,并具有理论工作,以开发相变柔性电子设备和开关设备; (iv)在合理设计的设备平台上设计了相移开关机制,以实现陡峭的子阈值坡度和超低功率逻辑开关。这个实验理论的协作团队将使用先进的纳米装置制造,表征,建模和仿真技术来探索和了解如何在过渡金属二进制二进制二进制中的相变材料,以量身定制,控制和利用用于超低功率和灵活电子应用。该研究将加深对原子层半导体中相变现象的基本理解,并开发出令人鼓舞的设备概念和模型,以利用原子上较薄的半导体中的栅极电压和应变控制的结晶相变,以启用未来的设备和系统来通过评估NSF的启发,并以nsf的构建为基础,并以此为基础。优点和更广泛的影响审查标准。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Philip Feng其他文献

Philip Feng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Philip Feng', 18)}}的其他基金

EAGER: Collaborative Research: Graphene Nanoelectromechanical Oscillators for Extreme Temperature and Harsh Environment Sensing
EAGER:合作研究:用于极端温度和恶劣环境传感的石墨烯纳米机电振荡器
  • 批准号:
    2221881
  • 财政年份:
    2022
  • 资助金额:
    $ 13.71万
  • 项目类别:
    Standard Grant
Collaborative Research: Innovating Quantum-Inspired Learning for Undergraduates in Research and Engineering
协作研究:为研究和工程本科生创新量子启发学习
  • 批准号:
    2142552
  • 财政年份:
    2022
  • 资助金额:
    $ 13.71万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Small: Massive Scale Computing and Optimization through On-chip ParameTric Ising MAchines (OPTIMA)
合作研究:FET:小型:通过片上 ParameTric Ising 机器进行大规模计算和优化 (OPTIMA)
  • 批准号:
    2103091
  • 财政年份:
    2021
  • 资助金额:
    $ 13.71万
  • 项目类别:
    Standard Grant
CAREER: Dynamically Tuning 2D Semiconducting Crystals and Heterostructures for Atomically-Thin Signal Processing Devices and Systems
职业:动态调整原子薄信号处理设备和系统的二维半导体晶体和异质结构
  • 批准号:
    2015708
  • 财政年份:
    2019
  • 资助金额:
    $ 13.71万
  • 项目类别:
    Standard Grant
Collaborative Research: Harnessing Crystalline Phase Transition in 2D Materials for Ultra-Low-Power and Flexible Electronics
合作研究:利用二维材料中的晶体相变实现超低功耗和柔性电子产品
  • 批准号:
    1810154
  • 财政年份:
    2018
  • 资助金额:
    $ 13.71万
  • 项目类别:
    Standard Grant
CAREER: Dynamically Tuning 2D Semiconducting Crystals and Heterostructures for Atomically-Thin Signal Processing Devices and Systems
职业:动态调整原子薄信号处理设备和系统的二维半导体晶体和异质结构
  • 批准号:
    1454570
  • 财政年份:
    2015
  • 资助金额:
    $ 13.71万
  • 项目类别:
    Standard Grant
Self-Sustaining Tunable Multi-Frequency Oscillators Using Atomically-Thin Semiconducting Multimode Resonators
使用原子薄半导体多模谐振器的自持可调谐多频振荡器
  • 批准号:
    1509721
  • 财政年份:
    2015
  • 资助金额:
    $ 13.71万
  • 项目类别:
    Standard Grant
Collaborative Research: Silicon Carbide Devices for Optomechanics and Photonics
合作研究:用于光机械和光子学的碳化硅器件
  • 批准号:
    1408494
  • 财政年份:
    2014
  • 资助金额:
    $ 13.71万
  • 项目类别:
    Standard Grant

相似国自然基金

基于CO2矿化利用固碳的生活源污染土加固机理研究
  • 批准号:
    42372309
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
整合土地覆被和生境利用影响的水禽秋季迁徙环境驱动机制研究
  • 批准号:
    42301055
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
油菜耐盐适应性“分子开关”基因BnST的作用机制与uORF调控元件利用研究
  • 批准号:
    32372065
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
OsPIL16-NR1.1/GDH3调控水稻氮素利用率的机制研究
  • 批准号:
    32301857
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肠出血性大肠杆菌利用sRNA感应肠道环境信号、提高体内致病能力的分子机制的研究
  • 批准号:
    82372267
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

CLIMA/Collaborative Research: Enhancing Soil-Based Infrastructure Resilience to Climate Change: Harnessing the Potential of Fractured Soil by Adding Biopolymers
CLIMA/合作研究:增强土壤基础设施对气候变化的抵御能力:通过添加生物聚合物来利用破碎土壤的潜力
  • 批准号:
    2332082
  • 财政年份:
    2024
  • 资助金额:
    $ 13.71万
  • 项目类别:
    Continuing Grant
CLIMA/Collaborative Research: Enhancing Soil-Based Infrastructure Resilience to Climate Change: Harnessing the Potential of Fractured Soil by Adding Biopolymers
CLIMA/合作研究:增强土壤基础设施对气候变化的抵御能力:通过添加生物聚合物来利用破碎土壤的潜力
  • 批准号:
    2332081
  • 财政年份:
    2024
  • 资助金额:
    $ 13.71万
  • 项目类别:
    Continuing Grant
Collaborative Research: CSR: Medium: Fortuna: Characterizing and Harnessing Performance Variability in Accelerator-rich Clusters
合作研究:CSR:Medium:Fortuna:表征和利用富含加速器的集群中的性能变异性
  • 批准号:
    2312689
  • 财政年份:
    2023
  • 资助金额:
    $ 13.71万
  • 项目类别:
    Continuing Grant
Collaborative Research: CSR: Medium: Fortuna: Characterizing and Harnessing Performance Variability in Accelerator-rich Clusters
合作研究:CSR:Medium:Fortuna:表征和利用富含加速器的集群中的性能变异性
  • 批准号:
    2401244
  • 财政年份:
    2023
  • 资助金额:
    $ 13.71万
  • 项目类别:
    Continuing Grant
Collaborative Research: Education DCL: EAGER: Harnessing the Power of Large Language Models in Digital Forensics Education at MSI and HBCU
合作研究:教育 DCL:EAGER:在 MSI 和 HBCU 的数字取证教育中利用大型语言模型的力量
  • 批准号:
    2333951
  • 财政年份:
    2023
  • 资助金额:
    $ 13.71万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了