Collaborative Research: FET: Small: Massive Scale Computing and Optimization through On-chip ParameTric Ising MAchines (OPTIMA)
合作研究:FET:小型:通过片上 ParameTric Ising 机器进行大规模计算和优化 (OPTIMA)
基本信息
- 批准号:2103091
- 负责人:
- 金额:$ 22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-15 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
For decades, academia and industry have relied on deterministic algorithms and on general-purpose von-Neumann computing architectures to solve combinatorial-optimization (CO) problems within natural and social sciences. As Moore’s law continues to slow down, the existing computing paradigm is reaching the limit of maximum complexity of the CO problems it can tackle, thus becoming increasingly inadequate to answer, in reasonable times, the fundamental questions that keep rising in a wide range of disciplines, spanning from engineering, physics and medicine to economics and finance. By emulating quantum systems, new computing architectures known as Ising Machines (IMs) have been emerging. IMs offer the unique opportunity to solve extraordinarily complex CO problems much faster than any existing von-Neumann counterparts. Yet, to date, no IM technology can afford a massive number of spins to handle the currently unsolvable CO problems, while ensuring a low-power consumption, a compact form factor, a chip-scale integration and a manufacturability en masse through the consolidated wafer-scale fabrication processes offered by the semiconductor industry. The goal of this project is to explore and develop a new IM, namely the first On-chip ParameTric Ising MAchine (OPTIMA). Thanks to its unique highly reprogrammable dynamics, triggered without requiring any special environmental conditions or any time-consuming pre-processing steps while exclusively requiring chip-scale components that can be monolithic integrated in favor of a massive scale production, the development of OPTIMA will pave the way towards powerful, fast and miniaturized quantum-inspired computing systems, accessible to everybody from everywhere. This will allow the creation of new cyber infrastructures that scholars, scientists, engineers and educators worldwide will be able to use in order to address relevant technological and social challenges. The project team is collaborating with STEM education and workforce development programs, at both Northeastern University and the University of Florida, to organize and host on-campus activities with students and teachers from both K-12 schools and community colleges, as well as outreach visits to local schools to encourage and broaden participation of underrepresented groups. The project achievements are enriching both the undergraduate and the graduate courses that the investigators teach on circuit theory, advanced acoustic-based technologies for communication and sensing, micro/nanoelectromechanical systems (MEMS/NEMS), and quantum engineering devices and systems. OPTIMA is leveraging the unique dynamical features governing the electrical response of a synchronized network of coupled on-chip Electro-Acoustic-Parametric-Oscillators (EAPOs) exploiting the uniquely combined ferroelectric and acoustic properties of Aluminum Scandium Nitride (AlScN) micro/nano devices to create extraordinarily low-power and highly miniaturized artificial spins, manufacturable through complementary-metal-oxide-semiconductor (CMOS) processes. Such unique features allow the breaking of all the previous paradigms in the design of IMs by simultaneously enabling 106 spins, a CMOS-compatible wafer-scale manufacturing and room-temperature operation while consuming less than 1 Watt. Further, thanks to its highly parallelized computational flow and because the EAPOs are operating in the Super-High-Frequency (SHF) range, OPTIMA is able to solve even the hardest nondeterministic polynomial time (NP) CO problems in nanosecond time scales, independently of the problem size. Finally, since OPTIMA is manufacturable through CMOS compatible processes, it is greatly leveraging conventional IC components built on the same silicon wafer to enable flexible programming, based on the CO problems of interest, as well as compact read-out schemes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
几十年来,学术界和工业界一直依赖于确定性算法和通用冯-诺依曼计算架构来解决自然科学和社会科学中的组合优化(CO)问题。随着摩尔定律继续放缓,现有的计算范式正在达到它所能解决的CO问题的最大复杂性的极限,从而变得越来越不足以在合理的时间内回答从工程,物理和医学到经济学和金融学的广泛学科中不断上升的基本问题。通过模拟量子系统,被称为伊辛机(IM)的新计算架构已经出现。IM提供了解决非常复杂的CO问题的独特机会,比任何现有的冯诺依曼同行快得多。然而,迄今为止,没有IM技术能够负担得起大量的自旋来处理当前无法解决的CO问题,同时通过由半导体工业提供的整合的晶片级制造工艺来确保低功耗、紧凑的形状因子、芯片级集成和可制造性增强。本项目的目标是探索和开发一种新的IM,即第一个片上参数化伊辛机(OPTIMA)。由于其独特的高度可重新编程的动态特性,触发不需要任何特殊的环境条件或任何耗时的预处理步骤,同时只需要可以单片集成的芯片级组件,有利于大规模生产,OPTIMA的开发将为强大,快速和小型化的量子计算系统铺平道路,每个人都可以从任何地方访问。这将有助于建立新的网络基础设施,使全世界的学者、科学家、工程师和教育工作者能够利用这些基础设施来应对相关的技术和社会挑战。该项目团队正在与东北大学和佛罗里达大学的STEM教育和劳动力发展项目合作,组织和举办与K-12学校和社区学院的学生和教师的校园活动,以及对当地学校的外展访问,以鼓励和扩大代表性不足的群体的参与。该项目的成果丰富了本科和研究生课程,研究人员教授电路理论,先进的基于声学的通信和传感技术,微/纳机电系统(MEMS/NEMS)以及量子工程设备和系统。OPTIMA正在利用独特的动态特性来控制耦合片上电声参数振荡器(EAPO)的同步网络的电响应,利用氮化铝钪(AlScN)微/纳米器件独特的铁电和声学特性来创建非常低功率和高度小型化的人工自旋,可通过互补金属氧化物半导体(CMOS)工艺制造。这种独特的功能允许打破所有以前的模式,在设计的IM,同时使106自旋,CMOS兼容的晶圆级制造和室温操作,而消耗不到1瓦。此外,由于其高度并行化的计算流程,并且由于EAPO在超高频(SHF)范围内运行,OPTIMA能够在纳秒时间尺度内解决最困难的非确定性多项式时间(NP)CO问题,而与问题大小无关。最后,由于OPTIMA可通过CMOS兼容工艺制造,因此它极大地利用了在同一硅片上构建的传统IC元件,从而能够根据感兴趣的CO问题以及紧凑的读出方案进行灵活编程。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Air Damping Effects on Different Modes of AlN-on-Si Microelectromechanical Resonators
- DOI:10.1109/mems49605.2023.10052273
- 发表时间:2023-01
- 期刊:
- 影响因子:0
- 作者:Yuncong Liu;S. M. Enamul Hoque Yousuf;Afzaal Qamar;M. Rais-Zadeh;P. Feng
- 通讯作者:Yuncong Liu;S. M. Enamul Hoque Yousuf;Afzaal Qamar;M. Rais-Zadeh;P. Feng
Thin Film PZT Multimode Resonant MEMS Temperature Sensor
薄膜 PZT 多模谐振 MEMS 温度传感器
- DOI:10.1109/sensors52175.2022.9967330
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Sui, Wen;Kaisar, Tahmid;Wang, Haoran;Wu, Yihao;Lee, Jaesung;Xie, Huikai;Feng, Philip X.-L.
- 通讯作者:Feng, Philip X.-L.
Retaining High Q Factors in Electrode-Less Aln-On-Si Bulk Mode Resonators with Non-Contact Electrical Drive
采用非接触式电力驱动的无电极硅基铝体模式谐振器保持高品质因数
- DOI:10.1109/mems51670.2022.9699607
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Yousuf, S M;Liu, Yuncong;Zheng, Xu-Qian;Qamar, Afzaal;Rais-Zadeh, Mina;Feng, Philip X.-L.
- 通讯作者:Feng, Philip X.-L.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Philip Feng其他文献
Philip Feng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Philip Feng', 18)}}的其他基金
EAGER: Collaborative Research: Graphene Nanoelectromechanical Oscillators for Extreme Temperature and Harsh Environment Sensing
EAGER:合作研究:用于极端温度和恶劣环境传感的石墨烯纳米机电振荡器
- 批准号:
2221881 - 财政年份:2022
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Collaborative Research: Innovating Quantum-Inspired Learning for Undergraduates in Research and Engineering
协作研究:为研究和工程本科生创新量子启发学习
- 批准号:
2142552 - 财政年份:2022
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Collaborative Research: Harnessing Crystalline Phase Transition in 2D Materials for Ultra-Low-Power and Flexible Electronics
合作研究:利用二维材料中的晶体相变实现超低功耗和柔性电子产品
- 批准号:
2015670 - 财政年份:2019
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
CAREER: Dynamically Tuning 2D Semiconducting Crystals and Heterostructures for Atomically-Thin Signal Processing Devices and Systems
职业:动态调整原子薄信号处理设备和系统的二维半导体晶体和异质结构
- 批准号:
2015708 - 财政年份:2019
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Collaborative Research: Harnessing Crystalline Phase Transition in 2D Materials for Ultra-Low-Power and Flexible Electronics
合作研究:利用二维材料中的晶体相变实现超低功耗和柔性电子产品
- 批准号:
1810154 - 财政年份:2018
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
CAREER: Dynamically Tuning 2D Semiconducting Crystals and Heterostructures for Atomically-Thin Signal Processing Devices and Systems
职业:动态调整原子薄信号处理设备和系统的二维半导体晶体和异质结构
- 批准号:
1454570 - 财政年份:2015
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Self-Sustaining Tunable Multi-Frequency Oscillators Using Atomically-Thin Semiconducting Multimode Resonators
使用原子薄半导体多模谐振器的自持可调谐多频振荡器
- 批准号:
1509721 - 财政年份:2015
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Collaborative Research: Silicon Carbide Devices for Optomechanics and Photonics
合作研究:用于光机械和光子学的碳化硅器件
- 批准号:
1408494 - 财政年份:2014
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: FET: Small: Reservoir Computing with Ion-Channel-Based Memristors
合作研究:FET:小型:基于离子通道忆阻器的储层计算
- 批准号:
2403559 - 财政年份:2024
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
- 批准号:
2329908 - 财政年份:2024
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
- 批准号:
2329909 - 财政年份:2024
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Collaborative Research: FET: Small: Reservoir Computing with Ion-Channel-Based Memristors
合作研究:FET:小型:基于离子通道忆阻器的储层计算
- 批准号:
2403560 - 财政年份:2024
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
- 批准号:
2312886 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
- 批准号:
2312884 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium: Efficient Compilation for Dynamically Reconfigurable Atom Arrays
合作研究:FET:中:动态可重构原子阵列的高效编译
- 批准号:
2313084 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Collaborative Research: FET: Small: Theoretical Foundations of Quantum Pseudorandom Primitives
合作研究:FET:小型:量子伪随机原语的理论基础
- 批准号:
2329938 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium: Design and Implementation of Quantum Databases
合作研究:FET:媒介:量子数据库的设计和实现
- 批准号:
2312755 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Collaborative Research: FET: Small: De Novo Protein Scaffold Filling by Combinatorial Algorithms and Deep Learning Models
合作研究:FET:小型:通过组合算法和深度学习模型从头填充蛋白质支架
- 批准号:
2307573 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Standard Grant