Self-Sustaining Tunable Multi-Frequency Oscillators Using Atomically-Thin Semiconducting Multimode Resonators

使用原子薄半导体多模谐振器的自持可调谐多频振荡器

基本信息

  • 批准号:
    1509721
  • 负责人:
  • 金额:
    $ 39.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-06-01 至 2020-05-31
  • 项目状态:
    已结题

项目摘要

Mechanical oscillators are essential and ubiquitous in many critical applications from fundamental science explorations to communication and sensing technologies. While miniaturization of devices in recent decades has created many resonant micro- and nanoelectromechanical systems (MEMS and NEMS) as new frequency references for making oscillators and clocks, major challenges remain in engineering ultralow-power, low-noise crystal oscillators by utilizing emerging resonators in new nanostructures. This project aims to discover new science and engineering principles in multi-frequency self-sustained oscillators enabled by multimode resonators based on atomic layer two-dimensional (2D) semiconductors, with a focus on previously unexplored effects and potentially unprecedented functions and performance. 2D NEMS are based on mechanically active atomically-thin semiconducting crystals derived from "beyond-graphene" layered materials that offer a spectrum of attractive electromechanical attributes. Multimode 2D NEMS resonators are a new class of vibrating NEMS with intriguing and tunable properties rich in their multiple resonance modes. With frequency reference and selectivity functions harnessed from multimode 2D NEMS resonators vibrating in radio-frequency (RF) and microwave bands, the self-sustaining feedback oscillators are distinct from passive resonators in that they possess their own stable limit cycles, and can sustain periodic oscillations without an external periodic drive. The goal of the integrated STEM educational plan is to educate and motivate youth by (i) a new outreach program for K-12 students to understand oscillations and learn the fascinating history of clocks and timing devices, (ii) summer research at Case Western Reserve University (CWRU) for high-school students, and (iii) actively broadening participations from underrepresented and economically disadvantaged groups, especially by extending outreach programs to public schools in Cleveland area. The objectives of this project are to demonstrate that 2D semiconductors can enable highly tunable self-sustaining oscillators, to develop the principles of 2D NEMS oscillator engineering and on-chip integration, and to explore pathways toward ultimate limits of crystal oscillators in the 2D platform. This project will establish the fundamental principles of signal transduction and feedback mechanisms in 2D crystal oscillators, lay the foundation for ultralow-power and tuning circuit design suitable for 2D systems, and address critical challenges in small-signal detection, parasitic effect suppression, nonlinearity, tuning and power handling. It will also explore phase noise in self-sustaining oscillations in 2D crystals at RF and microwave frequencies. The research will be enabled by innovative feedback circuit designs that will go significantly beyond the simple sustaining amplifiers that are sufficient for single-resonator, single-mode feedback oscillators. This project features a circuit-device co-design perspective, with the goal of eventually enabling entirely new, monolithic, multimode oscillators with phase noise engineering. This project will create and establish a new branch, 2D crystal oscillators, in the rapidly emerging and growing field of 2D devices and systems. The research will generate a plethora of new knowledge in both device physics and engineering principles that govern the 2D crystal oscillators, thus broadening the horizon of current knowledge of 2D systems. The findings shall also lead to enabling technologies for 2D timing and frequency control functions in atomic layers. This will contribute to establishing 2D electromechanical systems as a new pillar, in parallel to electronics and optoelectronics based on atomic layers, to support the future 2D semiconductor paradigm.
机械振荡器在从基础科学探索到通信和传感技术的许多关键应用中是必不可少的和普遍存在的。 虽然近几十年来器件的小型化创造了许多谐振微和纳机电系统(MEMS和NEMS)作为制造振荡器和时钟的新频率参考,但通过利用新纳米结构中的新兴谐振器来设计超低功率,低噪声晶体振荡器仍然存在重大挑战。 该项目旨在发现基于原子层二维(2D)半导体的多模谐振器实现的多频自持振荡器的新科学和工程原理,重点关注以前未探索的效应和潜在的前所未有的功能和性能。 2D NEMS基于机械活性原子薄半导体晶体,其衍生自“超越石墨烯”的层状材料,提供了一系列有吸引力的机电属性。 多模2D NEMS谐振器是一类新型的振动NEMS,具有丰富的多谐振模式,具有有趣的可调谐特性。 通过利用在射频(RF)和微波频带中振动的多模2D NEMS谐振器的频率参考和选择性功能,自持反馈振荡器与无源谐振器的不同之处在于它们具有自己的稳定极限环,并且可以在没有外部周期驱动的情况下维持周期性振荡。 综合STEM教育计划的目标是通过以下方式教育和激励青年:(i)为K-12学生提供新的外展计划,以了解振荡并学习时钟和计时设备的迷人历史,(ii)在凯斯西储大学(CWRU)为高中生进行夏季研究,以及(iii)积极扩大代表性不足和经济弱势群体的参与。特别是通过将外展计划扩展到克利夫兰地区的公立学校。 该项目的目标是证明2D半导体可以实现高度可调谐的自持振荡器,开发2D NEMS振荡器工程和片上集成的原理,并探索在2D平台中实现晶体振荡器极限的途径。 该项目将建立二维晶体振荡器中信号传导和反馈机制的基本原理,为适用于二维系统的超低功耗和调谐电路设计奠定基础,并解决小信号检测,寄生效应抑制,非线性,调谐和功率处理方面的关键挑战。 它还将探讨在RF和微波频率的2D晶体自持振荡的相位噪声。 这项研究将通过创新的反馈电路设计来实现,这些电路设计将大大超出足以用于单谐振器、单模反馈振荡器的简单维持放大器。 该项目从电路-器件协同设计的角度出发,最终实现具有相位噪声工程的全新单芯片多模振荡器。 该项目将在快速兴起和发展的2D器件和系统领域中创建并建立一个新的分支,即2D晶体振荡器。 这项研究将在器件物理和工程原理方面产生大量新知识,这些知识支配着2D晶体振荡器,从而拓宽了2D系统的现有知识。 这些发现还将导致在原子层中实现2D定时和频率控制功能的技术。 这将有助于建立2D机电系统作为一个新的支柱,与基于原子层的电子和光电子并行,以支持未来的2D半导体范式。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Programmable CMOS Feedback IC for Reconfigurable MEMS-Referenced Oscillators
用于可重构 MEMS 参考振荡器的可编程 CMOS 反馈 IC
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Khanmohammad, H.;Wang, P.;Babecki, C.;Feng, P. X.-L.;Mandal, S.
  • 通讯作者:
    Mandal, S.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Philip Feng其他文献

Philip Feng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Philip Feng', 18)}}的其他基金

EAGER: Collaborative Research: Graphene Nanoelectromechanical Oscillators for Extreme Temperature and Harsh Environment Sensing
EAGER:合作研究:用于极端温度和恶劣环境传感的石墨烯纳米机电振荡器
  • 批准号:
    2221881
  • 财政年份:
    2022
  • 资助金额:
    $ 39.75万
  • 项目类别:
    Standard Grant
Collaborative Research: Innovating Quantum-Inspired Learning for Undergraduates in Research and Engineering
协作研究:为研究和工程本科生创新量子启发学习
  • 批准号:
    2142552
  • 财政年份:
    2022
  • 资助金额:
    $ 39.75万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Small: Massive Scale Computing and Optimization through On-chip ParameTric Ising MAchines (OPTIMA)
合作研究:FET:小型:通过片上 ParameTric Ising 机器进行大规模计算和优化 (OPTIMA)
  • 批准号:
    2103091
  • 财政年份:
    2021
  • 资助金额:
    $ 39.75万
  • 项目类别:
    Standard Grant
Collaborative Research: Harnessing Crystalline Phase Transition in 2D Materials for Ultra-Low-Power and Flexible Electronics
合作研究:利用二维材料中的晶体相变实现超低功耗和柔性电子产品
  • 批准号:
    2015670
  • 财政年份:
    2019
  • 资助金额:
    $ 39.75万
  • 项目类别:
    Standard Grant
CAREER: Dynamically Tuning 2D Semiconducting Crystals and Heterostructures for Atomically-Thin Signal Processing Devices and Systems
职业:动态调整原子薄信号处理设备和系统的二维半导体晶体和异质结构
  • 批准号:
    2015708
  • 财政年份:
    2019
  • 资助金额:
    $ 39.75万
  • 项目类别:
    Standard Grant
Collaborative Research: Harnessing Crystalline Phase Transition in 2D Materials for Ultra-Low-Power and Flexible Electronics
合作研究:利用二维材料中的晶体相变实现超低功耗和柔性电子产品
  • 批准号:
    1810154
  • 财政年份:
    2018
  • 资助金额:
    $ 39.75万
  • 项目类别:
    Standard Grant
CAREER: Dynamically Tuning 2D Semiconducting Crystals and Heterostructures for Atomically-Thin Signal Processing Devices and Systems
职业:动态调整原子薄信号处理设备和系统的二维半导体晶体和异质结构
  • 批准号:
    1454570
  • 财政年份:
    2015
  • 资助金额:
    $ 39.75万
  • 项目类别:
    Standard Grant
Collaborative Research: Silicon Carbide Devices for Optomechanics and Photonics
合作研究:用于光机械和光子学的碳化硅器件
  • 批准号:
    1408494
  • 财政年份:
    2014
  • 资助金额:
    $ 39.75万
  • 项目类别:
    Standard Grant

相似海外基金

Attracting, preparing, and sustaining quality teachers in early education
吸引、培养和维持早期教育领域的优质教师
  • 批准号:
    DP240100249
  • 财政年份:
    2024
  • 资助金额:
    $ 39.75万
  • 项目类别:
    Discovery Projects
Sustaining chicken-meat production with alternative protein sources
利用替代蛋白质来源维持鸡肉生产
  • 批准号:
    LP220100292
  • 财政年份:
    2024
  • 资助金额:
    $ 39.75万
  • 项目类别:
    Linkage Projects
MHDSSP: Self-sustaining processes and edge states in magnetohydrodynamic flows subject to rotation and shear
MHDSSP:受到旋转和剪切作用的磁流体动力流中的自持过程和边缘状态
  • 批准号:
    EP/Y029194/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.75万
  • 项目类别:
    Fellowship
GreenTower AI: Hyper-Optimized and Self-Sustaining Cell Towers for a Net-Zero UK Telecom
GreenTower AI:英国电信零净值运营的超优化且自我维持的蜂窝塔
  • 批准号:
    10114180
  • 财政年份:
    2024
  • 资助金额:
    $ 39.75万
  • 项目类别:
    Collaborative R&D
Sustaining Innovative Tools to Expand Youth-Friendly HIV Self-Testing (S-ITEST)
维持创新工具以扩大青少年友好型艾滋病毒自我检测 (S-ITEST)
  • 批准号:
    10933892
  • 财政年份:
    2024
  • 资助金额:
    $ 39.75万
  • 项目类别:
TEA Center Renewal: Sustaining Technological Excellence Pursuit in Advanced Manufacturing at Navajo Technical University (S.T.E.P)
TEA 中心更新:纳瓦霍技术大学 (S.T.E.P) 持续追求先进制造技术卓越
  • 批准号:
    2332354
  • 财政年份:
    2024
  • 资助金额:
    $ 39.75万
  • 项目类别:
    Continuing Grant
Creating and Sustaining Noyce Mentors en la Frontera: a HSI Collaborative Capacity Building Grant
在拉弗龙特拉创建和维持诺伊斯导师:HSI 协作能力建设补助金
  • 批准号:
    2345011
  • 财政年份:
    2024
  • 资助金额:
    $ 39.75万
  • 项目类别:
    Standard Grant
Conference: Culturally Sustaining Approaches to Science and Engineering Classroom Assessments
会议:科学与工程课堂评估的文化可持续方法
  • 批准号:
    2341159
  • 财政年份:
    2024
  • 资助金额:
    $ 39.75万
  • 项目类别:
    Standard Grant
Beginnings: Creating and Sustaining a Diverse Community of Expertise in Quantum Information Science (EQUIS) Across the Southeastern United States
起点:在美国东南部创建并维持一个多元化的量子信息科学 (EQUIS) 专业社区
  • 批准号:
    2322593
  • 财政年份:
    2023
  • 资助金额:
    $ 39.75万
  • 项目类别:
    Cooperative Agreement
CISE-MSI: DP: CNS: AI-powered Diagnosis Augmented by Self-sustaining Sensing System for Intelligent Wastewater Infrastructure Management
CISE-MSI:DP:CNS:通过自我维持传感系统增强人工智能诊断,实现智能废水基础设施管理
  • 批准号:
    2318641
  • 财政年份:
    2023
  • 资助金额:
    $ 39.75万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了