Extracting the backbone of weighted networks

提取加权网络的主干

基本信息

  • 批准号:
    2016320
  • 负责人:
  • 金额:
    $ 14.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-15 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

In this project, methods to extract the backbone of weighted networks are investigated and computer software to use these methods is developed. Social networks are often complex, with the interactions between actors (e.g., people, organizations, cities) varying in strength, which can be represented by weighted networks. Because weighted networks are challenging to analyze and visualize, it is often useful to focus on their backbones, which contain only the most significant connections. Many approaches to backbone extraction exist, but we know little about whether they work or how to choose one approach over another. By providing guidance on and tools for network backbone extraction, this project will enable researchers to analyze better information-rich network data in a wide range of socially significant contexts, and to communicate their findings more easily to diverse audiences through visualization. The goal of this project is to facilitate researchers’ ability to correctly extract the backbone of weighted networks. Achieving this goal involves six activities. First, bipartite ensemble methods are refined to make them faster and more flexible. Second, the R backbone package is extended to allow the extraction of backbones from all types of weighted networks, to accommodate larger datasets, and to be interoperable with other network analysis packages. Third, backbone methods are compared empirically using benchmark datasets to explore their similarities and differences in practice. Fourth, backbone methods are compared analytically to determine their computational complexities and the functional form of their null edge weight distributions. Fifth, backbone methods are compared numerically using synthetic weighted network data, allowing identification of the conditions under which each method validly reproduces a known ground truth. Finally, training materials are developed to instruct researchers on the selection of backbone methods and on the use of the backbone package for their extraction.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在这个项目中,方法提取加权网络的骨干进行了研究和计算机软件使用这些方法的开发。 社交网络通常是复杂的,参与者之间的交互(例如,人、组织、城市)的强度不同,这可以由加权网络表示。 由于加权网络的分析和可视化具有挑战性,因此专注于其主干通常是有用的,因为主干只包含最重要的连接。 存在许多提取主干的方法,但我们对它们是否有效或如何选择一种方法知之甚少。通过提供网络主干提取的指导和工具,该项目将使研究人员能够在广泛的社会重要背景下更好地分析信息丰富的网络数据,并通过可视化更容易地将他们的发现传达给不同的受众。该项目的目标是促进研究人员正确提取加权网络骨干的能力。实现这一目标需要开展六项活动。首先,改进了二部集成方法,使其更快,更灵活。其次,扩展了R主干包,允许从所有类型的加权网络中提取主干,以适应更大的数据集,并与其他网络分析包互操作。第三,骨干方法进行了实证比较,使用基准数据集,以探讨他们在实践中的异同。第四,骨干方法进行了分析比较,以确定其计算复杂性和功能的形式,他们的零边重量分布。第五,骨干方法进行了数值比较,使用合成加权网络数据,允许识别的条件下,每个方法有效地再现了一个已知的地面真相。最后,开发培训材料来指导研究人员选择主干方法以及使用主干包进行提取。该奖项反映了NSF的法定使命,并且通过使用基金会的知识价值进行评估,被认为值得支持。和更广泛的影响审查标准。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zachary Neal其他文献

Interdisciplinary Collaborations in Academia: Modeling the Roles of Perceived Contextual Norms and Motivation to Collaborate
学术界的跨学科合作:对感知情境规范的作用和合作动机进行建模
  • DOI:
    10.1080/10510974.2023.2263922
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Brian Manata;Jessica Bozeman;Karen Boynton;Zachary Neal
  • 通讯作者:
    Zachary Neal

Zachary Neal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zachary Neal', 18)}}的其他基金

HNDS-R: Extracting the Backbone of Unweighted Networks
HNDS-R:提取未加权网络的主干
  • 批准号:
    2211744
  • 财政年份:
    2022
  • 资助金额:
    $ 14.89万
  • 项目类别:
    Standard Grant
Extracting the Backbone of Bipartite Projections
提取二分投影的主干
  • 批准号:
    1851625
  • 财政年份:
    2019
  • 资助金额:
    $ 14.89万
  • 项目类别:
    Standard Grant

相似国自然基金

基于interaction和backbone的NP类MAS问题解集表示、复杂性统计与高效算法研究
  • 批准号:
    11201019
  • 批准年份:
    2012
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: PurSUiT: A Backbone for the Peracarida
合作研究:PurSUiT:Peracarida 的支柱
  • 批准号:
    2321307
  • 财政年份:
    2024
  • 资助金额:
    $ 14.89万
  • 项目类别:
    Standard Grant
Collaborative Research: PurSUiT: A Backbone for the Peracarida
合作研究:PurSUiT:Peracarida 的支柱
  • 批准号:
    2321308
  • 财政年份:
    2024
  • 资助金额:
    $ 14.89万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Continental-Scale Study of Jura-Cretaceous Basins and Melanges along the Backbone of the North American Cordillera-A Test of Mesozoic Subduction Models
合作研究:RUI:北美科迪勒拉山脊沿线汝拉-白垩纪盆地和混杂岩的大陆尺度研究——中生代俯冲模型的检验
  • 批准号:
    2346565
  • 财政年份:
    2024
  • 资助金额:
    $ 14.89万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Continental-Scale Study of Jura-Cretaceous Basins and Melanges along the Backbone of the North American Cordillera-A Test of Mesozoic Subduction Models
合作研究:RUI:北美科迪勒拉山脊沿线汝拉-白垩纪盆地和混杂岩的大陆尺度研究——中生代俯冲模型的检验
  • 批准号:
    2346564
  • 财政年份:
    2024
  • 资助金额:
    $ 14.89万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Continental-Scale Study of Jura-Cretaceous Basins and Melanges along the Backbone of the North American Cordillera-A Test of Mesozoic Subduction Models
合作研究:RUI:北美科迪勒拉山脊沿线汝拉-白垩纪盆地和混杂岩的大陆尺度研究——中生代俯冲模型的检验
  • 批准号:
    2346566
  • 财政年份:
    2024
  • 资助金额:
    $ 14.89万
  • 项目类别:
    Standard Grant
Collaborative Research: PurSUiT: A Backbone for the Peracarida
合作研究:PurSUiT:Peracarida 的支柱
  • 批准号:
    2321306
  • 财政年份:
    2024
  • 资助金额:
    $ 14.89万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Continental-Scale Study of Jura-Cretaceous Basins and Melanges along the Backbone of the North American Cordillera-A Test of Mesozoic Subduction Models
合作研究:RUI:北美科迪勒拉山脊沿线汝拉-白垩纪盆地和混杂岩的大陆尺度研究——中生代俯冲模型的检验
  • 批准号:
    2346567
  • 财政年份:
    2024
  • 资助金额:
    $ 14.89万
  • 项目类别:
    Standard Grant
Exploring the Impact of Altered Backbone Composition on Protein Folding and Function
探索主链组成改变对蛋白质折叠和功能的影响
  • 批准号:
    10622073
  • 财政年份:
    2023
  • 资助金额:
    $ 14.89万
  • 项目类别:
Synthesizing backbone-extended, braced peptides for applications in antimicrobials and cellular signaling domains affecting neuropathy
合成主链延伸的支撑肽,用于影响神经病变的抗菌药物和细胞信号传导领域
  • 批准号:
    557784-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 14.89万
  • 项目类别:
    Postdoctoral Fellowships
NeTS: JUNO3: Cloud-Carrier Cooperation for Efficient and Ultra-Reliable Programmable Backbone Networks
NetS:JUNO3:云运营商合作打造高效、超可靠的可编程骨干网络
  • 批准号:
    2210384
  • 财政年份:
    2022
  • 资助金额:
    $ 14.89万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了