Collaborative Research: Learning by Touch: Preparing Blind Students to Participate in the Data Science Revolution

合作研究:触摸学习:帮助盲人学生参与数据科学革命

基本信息

  • 批准号:
    2016789
  • 负责人:
  • 金额:
    $ 42.18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

Over the past decade the data science revolution has transformed the way scientists, engineers, and businesses work. A key enabler is the rise of interactive data visualization tools, which allow users to filter, analyze, and understand large data sets. Beyond static charts and graphs, interactive data visualization allows users to view data in different ways and from different perspectives, to build deeper understanding of trends, and to test hypotheses. However, Blind and Visually Impaired People have not been able to fully participate in this data revolution. Common tools for data analysis and data exploration are based on interactive spatial graphics, displayed on 2D screens. These spatial diagrams, charts, and other representations are not easily conveyed through speech or text – the typical ways in which Blind and Visually impaired people consume information through computers. This lack of access to common tools has presented a barrier for Blind and Visually Impaired People to enter STEM fields. History teaches us that, with the right tools, Blind and Visually Impaired People can contribute fully to highly technical fields. For example, many blind people are engaged as programmers and network administrators across a range of industries. It is evident that, if Blind and Visually Impaired People are provided with accessible tools that are functionally equivalent to those used by others and are able to interact with and generate their own data, they will take their place in the world of work, alongside their sighted peers. To address these issues, this project will work to: (1) increase understanding of data literacy amongst Blind and Visually Impaired People; (2) develop new tools and techniques, using touch and audio, to help prepare Blind and Visually Impaired People’s to understand and explore data. This is expected to begin to increase access to STEM concepts and materials in the BVI community, where access has previously been limited. Spatial information is ubiquitous in STEM; finding effective ways to make it accessible to everyone is imperative. Increasing access to Interactive Data Visualization tools will help prepare the Blind and Visually Impaired to participate as data scientists, software engineers, and informed citizens. This research will work to make fundamental contributions in the fields of information visualization, assistive technology, and haptic perception, advancing our understanding of techniques for effective encoding and exploration of spatial information in alternate forms to graphical representation. It will also expand on guidelines for multi-modal haptic interaction with spatial information and create new open source software to enable these interactions. Finally, it will contribute to the field of informal STEM learning, providing understanding about data literacy and personal data exploration as a pathway to engage the Blind and Visually Impaired community in data science and STEM activities. The research will use a mixed methods approach, using co-design, qualitative and longitudinal field studies, and quantitative lab studies. Through 4 synergistic research themes, this project will expand knowledge of broadening access to interactive data visualization for Blind and Visually Impaired People by investigating: (1) current practices, gaps and needs in data literacy for Blind and Visually Impaired People; (2) how task goals affect exploration strategies for tactile perception of data for BVI people; (3) data exploration and manipulation strategies through co-design using an interactive tactile display; and (4) the efficacy of interactive tactile data exploration to expand data literacy for BVI people.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去的十年中,数据科学革命改变了科学家,工程师和企业的工作方式。关键推动器是交互式数据可视化工具的兴起,该工具允许用户过滤,分析和理解大型数据集。除了静态图表和图表之外,交互式数据可视化还可以使用户以不同的方式和不同的角度查看数据,从而更深入地了解趋势并检验假设。但是,盲人和视力障碍的人无法完全参与这场数据革命。数据分析和数据探索的常见工具基于2D屏幕上显示的交互式空间图形。这些空间图,图表和其他表示不容易通过语音或文本传达,这是盲人和视力障碍者通过计算机消费信息的典型方式。这种缺乏通用工具的机会为盲人和视力障碍的人进入STEM领域带来了障碍。历史告诉我们,使用正确的工具,盲人和视力障碍的人可以为高科技领域做出充分贡献。例如,许多盲人曾担任各个行业的程序员和网络管理员。有证据表明,如果为盲人和视力障碍的人提供了与他人使用的功能相同的可访问工具,并且他们是否可以与他们的数据互动并生成自己的数据,他们将在工作世界中与视力同行一起占据一席之地。为了解决这些问题,该项目将致力于:(1)对盲人和视力障碍人士中对数据素养的了解; (2)使用触摸和音频开发新的工具和技术,以帮助准备盲人和视力障碍的人以了解和探索数据。预计这将开始增加BVI社区的STEM概念和材料的访问,而BVI社区以前访问访问权限。空间信息无处不在。必须找到使每个人都可以使用的有效方法。增加获得交互式数据可视化工具的访问将有助于准备盲人和视力障碍,以作为数据科学家,软件工程师和知情公民参与。这项研究将努力在信息可视化,辅助技术和狂热感知领域做出基本贡献,从而促进我们对技术的理解,以有效地编码和探索替代形式的空间信息,以探索图形表示。它还将扩展与空间信息的多模式哈蒂互动的准则,并创建新的开源软件以实现这些交互。最后,它将有助于非正式的STEM学习领域,从而提供有关数据素养和个人数据探索的理解,以此作为参与数据科学和STEM活动中盲人和视力障碍社区的途径。该研究将使用共同设计,定性和纵向现场研究以及定量实验室研究使用混合方法。通过4个协同研究主题,该项目将扩大知识,即通过调查盲目和视力障碍者的交互式数据可视化的知识:(1)目前的实践,差距和需求,用于盲人和视力障碍者的数据素养; (2)任务目标如何影响BVI人对数据的触觉感知的勘探策略; (3)使用交互式触觉显示通过共同设计的数据探索和操纵策略; (4)交互式触觉数据探索对扩大BVI人的数据素养的效率。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响审查标准,被认为是通过评估而被视为珍贵的。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
COVID-19 highlights the issues facing blind and visually impaired people in accessing data on the web
  • DOI:
    10.1145/3430263.3452432
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Siu;Danyang Fan;Gene S.-H. Kim;Hrishikesh V. Rao;Xavier Vazquez;Sile O'Modhrain;Sean Follmer
  • 通讯作者:
    A. Siu;Danyang Fan;Gene S.-H. Kim;Hrishikesh V. Rao;Xavier Vazquez;Sile O'Modhrain;Sean Follmer
The Accessibility of Data Visualizations on the Web for Screen Reader Users: Practices and Experiences During COVID-19
  • DOI:
    10.1145/3557899
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Danyang Fan;Alexa Fay Siu;Hrishikesh V. Rao;Gene S.-H. Kim;Xavier Vazquez;Lucy Greco;Sile O'Modhrain;Sean Follmer
  • 通讯作者:
    Danyang Fan;Alexa Fay Siu;Hrishikesh V. Rao;Gene S.-H. Kim;Xavier Vazquez;Lucy Greco;Sile O'Modhrain;Sean Follmer
Slide-Tone and Tilt-Tone: 1-DOF Haptic Techniques for Conveying Shape Characteristics of Graphs to Blind Users
Slide-Tone 和 Tilt-Tone:向盲人用户传达图形形状特征的 1-DOF 触觉技术
Supporting Accessible Data Visualization Through Audio Data Narratives
通过音频数据叙述支持可访问的数据可视化
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sean Follmer其他文献

Investigating Active Tangibles and Augmented Reality for Creativity Support in Remote Collaboration
研究活跃的有形资产和增强现实以支持远程协作中的创造力
  • DOI:
    10.1007/978-3-030-28960-7_12
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mathieu Le Goc;Allen Zhao;Ye Wang;Griffin Dietz;Robert Semmens;Sean Follmer
  • 通讯作者:
    Sean Follmer
An Accessible CAD Workflow Using Programming of 3D Models and Preview Rendering in A 2.5D Shape Display
使用 3D 模型编程和在 2.5D 形状显示中预览渲染的可访问 CAD 工作流程
Generating Legible and Glanceable Swarm Robot Motion through Trajectory, Collective Behavior, and Pre-attentive Processing Features
通过轨迹、集体行为和预先注意处理功能生成清晰易懂的群体机器人运动
A Model Predictive Control Approach for Reach Redirection in Virtual Reality
虚拟现实中到达重定向的模型预测控制方法
Human Perception of Swarm Robot Motion
人类对群体机器人运动的感知

Sean Follmer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sean Follmer', 18)}}的其他基金

CAREER: Advancing Accessible Making for People with Visual Impairments via Tactile Shape Displays
职业:通过触觉形状显示器为视力障碍人士推进无障碍制作
  • 批准号:
    2142782
  • 财政年份:
    2022
  • 资助金额:
    $ 42.18万
  • 项目类别:
    Continuing Grant
NRI: INT: COLLAB: Mesh Of Robots on a Pneumatic Highway (MORPH): An Untethered, Human-Safe, Shape-Morphing Robotic Platform
NRI:INT:COLLAB:气动高速公路上的机器人网格 (MORPH):一个不受束缚、对人类安全、可变形的机器人平台
  • 批准号:
    1925030
  • 财政年份:
    2019
  • 资助金额:
    $ 42.18万
  • 项目类别:
    Standard Grant

相似国自然基金

面向多方协作机器学习的安全与隐私保护技术研究
  • 批准号:
    62302192
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于多模态动态图神经网络的教师在线协作反思测评与干预研究
  • 批准号:
    62307033
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
面向车联网网络流量数据的多方协作学习风险控制机制研究
  • 批准号:
    62373094
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
在线协作学习中的共享调节机制与干预策略研究
  • 批准号:
    72304083
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于强化学习的海洋环境适配水声协作网络路由关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
  • 批准号:
    2409652
  • 财政年份:
    2024
  • 资助金额:
    $ 42.18万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
  • 批准号:
    2414474
  • 财政年份:
    2024
  • 资助金额:
    $ 42.18万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
  • 批准号:
    2347423
  • 财政年份:
    2024
  • 资助金额:
    $ 42.18万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
  • 批准号:
    2342498
  • 财政年份:
    2024
  • 资助金额:
    $ 42.18万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403312
  • 财政年份:
    2024
  • 资助金额:
    $ 42.18万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了