Improving the Allocation Consumer Credit with Machine Learning
通过机器学习改善消费信贷配置
基本信息
- 批准号:2018245
- 负责人:
- 金额:$ 19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractThe project will examine the accuracy and fairness of credit scores to improve the allocation of consumer credit and mitigate disparities for disadvantaged groups, such as young and minority borrowers. The research will implement a machine learning approach that is at the frontier of computer science to explore this economic question. The research will investigate the notion that there need not be a trade-off between accuracy of credit scores and a more equitable allocation of loans. The project will further look at factors related to credit conditions and default behavior for disadvantaged groups. The resulting findings will generate direct and actionable implications for policies and regulations pertaining to consumer debt to help reduce inequality and improve welfare.The project will introduce pioneering advances in constrained machine learning to develop predictions of consumer default that are fair such that the credit allocation does not penalize borrowers in disadvantaged groups, such as young or minority borrowers. The notion of fairness is grounded in economic theory, measurable in the data, and has an intuitive interpretation. Constrained machine learning is at the frontier of computer science, and this project will apply these techniques in examining this economic issue. The project will isolate the most important factors associated with default and how they vary over time for different subpopulations. The results of the project will be useful in designing policies on consumer finance that enables equitable allocation of credit that improves welfare.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将检查信用评分的准确性和公平性,以改善消费信贷的分配,并减轻弱势群体,如年轻人和少数民族借款人的差距。该研究将采用计算机科学前沿的机器学习方法来探索这一经济问题。 这项研究将调查的概念,有没有必要之间的权衡准确性的信用评分和更公平的分配贷款。该项目将进一步研究与弱势群体的信贷条件和违约行为有关的因素。研究结果将对消费者债务相关政策和法规产生直接和可操作的影响,以帮助减少不平等和改善福利。该项目将引入受约束机器学习的开创性进展,以开发公平的消费者违约预测,从而使信贷分配不会惩罚弱势群体的借款人,如年轻人或少数民族借款人。公平的概念是建立在经济理论基础上的,可以用数据来衡量,并有一个直观的解释。受约束的机器学习是计算机科学的前沿,本项目将应用这些技术来研究这一经济问题。该项目将分离与违约相关的最重要因素,以及它们如何随时间推移而变化。该项目的成果将有助于制定消费者金融政策,使信贷的公平分配,提高福利。该奖项反映了NSF的法定使命,并已被认为是值得支持的评价使用基金会的知识价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stefania Albanesi其他文献
Do Informal Referrals Lead to Better Matches ? Evidence from a Firm ’ s Employee Referral System Meta
来自公司员工推荐系统元的证据表明,非正式推荐会带来更好的匹配吗?
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Meta S. Brown;Elizabeth Setren;Giorgio Topa;Stefania Albanesi;Laura Gee;Kevin Lang;Fabian Lange;Charles Bellemare;M. Galenianos;Bentley Macleod;Uta Schoenberg;Wilbert van der Klaauw - 通讯作者:
Wilbert van der Klaauw
The Outlook for Women's Employment and Labor Force Participation
妇女就业和劳动力参与的前景
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Stefania Albanesi - 通讯作者:
Stefania Albanesi
Federal Reserve Bank of New York Staff Reports Consumption Heterogeneity, Employment Dynamics, and Macroeconomic Co-movement Consumption Heterogeneity, Employment Dynamics, and Macroeconomic Co-movement
纽约联邦储备银行工作人员报告消费异质性、就业动态和宏观经济联动 消费异质性、就业动态和宏观经济联动
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Stefano Eusepi;Bruce Preston;Stefania Albanesi;Roc Armenter;Paul Beaudry;Carlos Carvalho - 通讯作者:
Carlos Carvalho
Federal Reserve Bank of New York Staff Reports Labor Supply Heterogeneity and Macroeconomic Comovement Labor Supply Heterogeneity and Macroeconomic Comovement
纽约联邦储备银行工作人员报告劳动力供应异质性和宏观经济联动 劳动力供应异质性和宏观经济联动
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Stefano Eusepi;Bruce Preston;Stefania Albanesi;Roc Armenter;Carlos Carvalho;Ayşegül Şahi̇n - 通讯作者:
Ayşegül Şahi̇n
M ACROECONOMIC E FFECTS OF THE G ENDER R EVOLUTION *
性别革命的宏观经济影响*
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
D. R. B. Ergholt;L. U. F. Osso;F. R. F. Urlanetto;Stefania Albanesi;Guido Ascari;Martin Be;Paolo Bonomolo;Fabio Canova;Efrem Castelnuovo;Marco del Negro;Domenico Giannone;Joseba Martinez;Karel Mertens;Silvia Miranda Agrippino;Evi Pappa;Giorgio E Primiceri;Giuseppe Ragusa;Giovanni Ricco;J. Rubio;Aysegul Sahin;Stefan Schiman - 通讯作者:
Stefan Schiman
Stefania Albanesi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stefania Albanesi', 18)}}的其他基金
The 2007-2009 Housing Crisis: Causes, Policy Responses and Long Term Implications
2007-2009 年住房危机:原因、政策应对和长期影响
- 批准号:
1824321 - 财政年份:2018
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Collaborative Research: Motherhood and Medicine: An Historical Perspective on Health, Fertility and Women's Work and Earnings
合作研究:母性与医学:健康、生育以及妇女工作和收入的历史视角
- 批准号:
0820135 - 财政年份:2008
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Optimal Taxation of Entrepreneurial Capital and Financial Assets with Private Information
具有私人信息的创业资本和金融资产的最优税收
- 批准号:
0617774 - 财政年份:2006
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Collaborative Research: Understanding the Gender Gap in Earnings: Household Production, Market Production and Labor Contracts
合作研究:了解收入中的性别差距:家庭生产、市场生产和劳动合同
- 批准号:
0551511 - 财政年份:2006
- 资助金额:
$ 19万 - 项目类别:
Continuing Grant
相似国自然基金
CREB在杏仁核神经环路memory allocation中的作用和机制研究
- 批准号:31171079
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
The effective and sustainable allocation of the land-based carbon dioxide removal options under changing climate
气候变化下陆基二氧化碳清除方案的有效和可持续分配
- 批准号:
24K20979 - 财政年份:2024
- 资助金额:
$ 19万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Efficient and Equitable Housing Allocation
职业:高效、公平的住房分配
- 批准号:
2339912 - 财政年份:2024
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
CAREER: Next Generation Online Resource Allocation
职业:下一代在线资源分配
- 批准号:
2340306 - 财政年份:2024
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Malleability in resource allocation for improved system efficiency in high-performance computing
资源分配的可塑性可提高高性能计算的系统效率
- 批准号:
EP/Y53061X/1 - 财政年份:2024
- 资助金额:
$ 19万 - 项目类别:
Research Grant
Improving funding allocation to places for Levelling Up
改善升级地方的资金分配
- 批准号:
ES/Z000157/1 - 财政年份:2024
- 资助金额:
$ 19万 - 项目类别:
Research Grant
Balanced Allocation Meets Queueing Theory
平衡分配与排队理论的结合
- 批准号:
EP/Y032691/1 - 财政年份:2024
- 资助金额:
$ 19万 - 项目类别:
Research Grant
AF:RI:Small: Fairness in allocation and machine learning problems: algorithms and solution concepts
AF:RI:Small:分配公平性和机器学习问题:算法和解决方案概念
- 批准号:
2334461 - 财政年份:2024
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
AF: Small: Communication-Aware Algorithms for Dynamic Allocation of Heterogeneous Resources
AF:小型:用于异构资源动态分配的通信感知算法
- 批准号:
2335187 - 财政年份:2024
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Integrating physiological and behavioral ecology: How limited resources and allocation trade-offs impact mate signaling
整合生理和行为生态学:有限的资源和分配权衡如何影响配偶信号
- 批准号:
2335882 - 财政年份:2024
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
GOALI: Nurse Matching to Hospitals Using Static and Dynamic Allocation through an Online Platform
GOALI:通过在线平台使用静态和动态分配将护士与医院匹配
- 批准号:
2245013 - 财政年份:2023
- 资助金额:
$ 19万 - 项目类别:
Standard Grant














{{item.name}}会员




