CC* Team: Research Innovation with Scientists and Engineers (RISE)

CC* 团队:科学家和工程师的研究创新 (RISE)

基本信息

  • 批准号:
    2018299
  • 负责人:
  • 金额:
    $ 186.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

The pace of scientific discovery and the dissemination of scientific knowledge are increasingly being driven by computation through modeling, data science, and digital communication platforms. Not all researchers are equally positioned to leverage this computational revolution due to having inadequate expertise in their groups or insufficient funding to hire computational experts into full time positions. Penn State is working to ensure that researchers and educators across the 24-campus Penn State system have access to the cutting-edge cyberinfrastructure and computational expertise that they need to conduct the highest quality research and education. Penn State's approach is to build a team of cyberinfrastructure facilitators who are shared across investigators and who consult on projects at various scales to bring shared knowledge and the best-practices of modern computational techniques and tools to the broadest possible Penn State community. These facilitators, known as the "Research Innovation with Scientists and Engineers" (RISE) team, are experts in databases, visualization, code optimization, application development, web services, and cloud computing. They have broad knowledge of research cyberinfrastructure and are able to architect, design, and develop new cyberinfrastructure. They will also have deep knowledge of various scientific domains and will enable computational discovery. Investing in such a team will pay substantial dividends through increased productivity of faculty, more efficient use of research and education funding, and ultimately new discoveries across a broad swath of scientific domains including Physics, Astronomy, Bioinformatics, Chemistry, Energy, and Climate Modeling.This project builds a cyber-team for Research Innovation with Scientists and Engineers (RISE) who will partner with campus-level CI experts, domain scientists, research groups, and educators to drive new approaches that support scientific discovery across the state-wide Pennsylvania State University system including 24 campuses serving more than 100,000 students. The RISE team will directly facilitate the usage and creation of research cyberinfrastructure across domains including Astronomy, Biology, Chemistry, Meteorology, Physics and more through consulting and providing direct services to faculty. The RISE team will partner with the Open Science Grid to establish Penn State as an OSG site, develop replica-exchange molecular dynamics software, apply machine learning to molecular biophysics, build digital signal processing software for radio astronomy, collaborate on feature development and testing with HTCondor, onboard new climate modeling tools and software in a sustainable and maintainable ecosystem, develop a gene sequencing management platform, deploy and maintain infrastructure to support real-time gravitational wave analysis with LIGO, and build a science gateway for stellar astrophysics simulations. Through the RISE team's shared knowledge, they will elevate the productivity of researchers who use and develop cyberinfrastructure allowing them to accomplish far more than they could in isolation. In order to broaden participation, the investigators will develop a seed grant program whereby faculty can apply to receive extended engagement with the RISE team where members would be embedded into research groups. RISE members will also regularly conduct training workshops and seminars in response to the needs of faculty across all Penn State campuses. Participation broadening and coordination activities will involve regular travel among the branch campuses by RISE team members and project investigators.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
科学发现的速度和科学知识的传播越来越多地由建模,数据科学和数字通信平台来驱动。并非所有的研究人员都可以在其小组中没有足够的专业知识或资金不足以雇用计算专家担任全职职位,从而利用这一计算革命。 宾夕法尼亚州立大学(Penn State)正在努力确保24校园宾夕法尼亚州立系统的研究人员和教育者能够访问他们需要进行最高质量研究和教育所需的尖端网络基础设施和计算专业知识。 宾夕法尼亚州立大学的方法是建立一个网络基础设施促进者团队,这些促进者在调查人员之间进行共享,并在各种规模的项目上进行咨询,以将现代计算技术和工具的最佳实践带到最广泛的宾夕法尼亚州立社区。 这些促进者被称为“与科学家和工程师的研究创新”(RISE)团队,是数据库,可视化,代码优化,应用程序开发,Web服务和云计算的专家。他们对研究网络基础设施有广泛的了解,并能够建筑,设计和开发新的网络基础设施。 他们还将对各种科学领域有深刻的了解,并将实现计算发现。通过提高教师的生产力,对研究和教育资金的更有效利用,以及最终在广泛的科学领域,包括物理学,天文学,化学,化学,能源和气候建模的广泛科学领域的新发现,以及与科学家的研究创新(Rise Innellation)的cyber-drominter(Rise Innellation),该公司的养分伙伴(包括物理学,化学,能量和气候),将对rase Inneloveration(Rise Innellation)建立了cybortians and Orighters(Rise Innellation),这将支付这项团队的投资。科学家,研究小组和教育工作者采用新方法,以支持整个宾夕法尼亚州立大学系统的科学发现,其中包括24个为10万名学生提供服务的校园。 崛起团队将直接通过咨询和为教师提供直接服务,直接促进跨领域的研究网络基础设施的使用和创建。崛起团队将与开放科学网格合作,以建立宾夕法尼亚州为OSG站点,开发复制 - 交换分子动态软件,将机器学习应用于分子生物物理学,建立数字信号处理软件,以进行射电天文学,并与HTCondor进行协作,并与HTCondor进行协作,以实现可持续的型号和维护型的Ecossement,以维护Ecosement,以维护Ecosement,以维护Ecosement,以进行ECOSESTION,并在范围内维护ECOSENTIRE,并将其置于ECOSENTION,ECOSERIDEN,ECOSENIDER,ECOSERIDE通过LIGO支持实时重力波分析,并为恒星天体物理学模拟建立科学门户。通过崛起团队的共同知识,他们将提高使用和开发网络基础架构的研究人员的生产力,从而使他们的成就远远超过了孤立。 为了扩大参与,调查人员将制定一项种子赠款计划,教师可以申请与Rise团队进行扩展参与,其中成员将嵌入研究小组中。 Rise成员还将定期进行培训研讨会和研讨会,以应对所有宾夕法尼亚州立大学的教师的需求。 参与扩大和协调活动将涉及崛起团队成员和项目调查人员之间的分支校园之间的定期旅行。该奖项反映了NSF的法定任务,并认为使用基金会的知识分子优点和更广泛的影响评估标准,认为值得通过评估来获得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chad Hanna其他文献

Searching for gravitational waves from compact binary coalescence
Searching for asymmetric and heavily precessing Binary Black Holes in the gravitational wave data from the LIGO and Virgo third Observing Run
在 LIGO 和 Virgo 第三次观测运行的引力波数据中寻找不对称和严重进动的双黑洞
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Stefano Schmidt;S. Caudill;J. Creighton;L. Tsukada;Anarya Ray;S. Adhicary;Pratyusava Baral;A. Baylor;Kipp Cannon;B. Cousins;B. Ewing;Heather Fong;Richard N. George;P. Godwin;Chad Hanna;Reiko Harada;Yun;R. Huxford;Prathamesh Joshi;J. Kennington;Soichiro Kuwahara;A. K. Li;R. Magee;D. Meacher;C. Messick;S. Morisaki;D. Mukherjee;Wanting Niu;A. Pace;C. Posnansky;S. Sachdev;S. Sakon;Divya R. Singh;Urja Shah;R. Tapia;T. Tsutsui;K. Ueno;A. Viets;L. Wade;M. Wade
  • 通讯作者:
    M. Wade

Chad Hanna的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chad Hanna', 18)}}的其他基金

CC* Data Storage: Cost-effective Attached Storage for High throughput computing using Homo- geneous IT (CASH HIT) supporting Penn State Science, the Open Science Grid and LIGO
CC* 数据存储:使用同质 IT (CASH HIT) 实现高吞吐量计算的经济高效附加存储,支持宾夕法尼亚州立大学科学学院、开放科学网格和 LIGO
  • 批准号:
    2346596
  • 财政年份:
    2024
  • 资助金额:
    $ 186.4万
  • 项目类别:
    Standard Grant
Discovering Neutron Stars and Black Holes with LIGO
利用 LIGO 发现中子星和黑洞
  • 批准号:
    2308881
  • 财政年份:
    2023
  • 资助金额:
    $ 186.4万
  • 项目类别:
    Standard Grant
CC* Compute: An Open Science Grid shared computing platform at Penn State
CC* 计算:宾夕法尼亚州立大学的开放科学网格共享计算平台
  • 批准号:
    2201445
  • 财政年份:
    2022
  • 资助金额:
    $ 186.4万
  • 项目类别:
    Standard Grant
Framework: An A+ Framework for Multimessenger Astrophysics Discoveries through Real-Time Gravitational Wave Detection
框架:通过实时引力波探测进行多信使天体物理学发现的框架
  • 批准号:
    2103662
  • 财政年份:
    2021
  • 资助金额:
    $ 186.4万
  • 项目类别:
    Standard Grant
Discovering Black Holes and Neutron Stars with LIGO
利用 LIGO 发现黑洞和中子星
  • 批准号:
    2011865
  • 财政年份:
    2020
  • 资助金额:
    $ 186.4万
  • 项目类别:
    Standard Grant
Scalable Cyberinfrastructure for Early Warning Gravitational Wave Detections
用于早期预警引力波探测的可扩展网络基础设施
  • 批准号:
    1841480
  • 财政年份:
    2018
  • 资助金额:
    $ 186.4万
  • 项目类别:
    Standard Grant
SI2-SSE: Hearing the Signal through the Static: Realtime Noise Reduction in the Hunt for Binary Black Holes and other Gravitational Wave Transients
SI2-SSE:通过静电听到信号:寻找双黑洞和其他引力波瞬变过程中的实时降噪
  • 批准号:
    1642391
  • 财政年份:
    2016
  • 资助金额:
    $ 186.4万
  • 项目类别:
    Continuing Grant
CAREER: Enabling Multimessenger Astrophysics with Real-Time Gravitational Wave Detection
职业:通过实时引力波检测实现多信使天体物理学
  • 批准号:
    1454389
  • 财政年份:
    2015
  • 资助金额:
    $ 186.4万
  • 项目类别:
    Continuing Grant

相似国自然基金

极端团队的工作特征与团队韧性研究:基于认知与情绪的双通路机制
  • 批准号:
    72302214
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
临时团队协作历史对协作主动行为的影响研究:基于社会网络视角
  • 批准号:
    72302101
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
在线医疗团队协作模式与绩效提升策略研究
  • 批准号:
    72371111
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
  • 批准号:
    72372084
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
数字化转型下人机融合领导风格对团队绩效的影响机制研究
  • 批准号:
    72372156
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目

相似海外基金

CC* Team: CAREERS: Cyberteam to Advance Research and Education in Eastern Regional Schools
CC* 团队:职业:网络团队推进东部地区学校的研究和教育
  • 批准号:
    2018873
  • 财政年份:
    2020
  • 资助金额:
    $ 186.4万
  • 项目类别:
    Continuing Grant
CC* Team: Oregon Big Data Research and Education Team
CC*团队:俄勒冈大数据研究与教育团队
  • 批准号:
    2019161
  • 财政年份:
    2020
  • 资助金额:
    $ 186.4万
  • 项目类别:
    Continuing Grant
CC* Team: Texas Education and Research Cybertraining Center (TERCC)
CC* 团队:德克萨斯州教育和研究网络培训中心 (TERCC)
  • 批准号:
    2019135
  • 财政年份:
    2020
  • 资助金额:
    $ 186.4万
  • 项目类别:
    Continuing Grant
CC* Team: Piloting a CI-Enabled Tribal College and University Research Collaboration
CC* 团队:试点支持 CI 的部落学院和大学研究合作
  • 批准号:
    2018975
  • 财政年份:
    2020
  • 资助金额:
    $ 186.4万
  • 项目类别:
    Standard Grant
CC* Team: KyRC - A Kentucky Research Computing Team
CC* 团队:KyRC - 肯塔基州研究计算团队
  • 批准号:
    1925687
  • 财政年份:
    2019
  • 资助金额:
    $ 186.4万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了