CC* Compute: An Open Science Grid shared computing platform at Penn State
CC* 计算:宾夕法尼亚州立大学的开放科学网格共享计算平台
基本信息
- 批准号:2201445
- 负责人:
- 金额:$ 39.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project establishes a new state-of-the-art high-throughput computing cluster for researchers across the 24-campus Penn State University system. The cluster is composed of 10 AMD EPYC nodes, each with 128 cores and one A40 Nvidia GPU. Researchers in the Institute for Gravitation and the Cosmos and the Institute for Computational and Data Sciences, priority users for the cluster, use this computer cluster to: study the universe by analyzing data to find ripples in space called gravitational waves; investigate novel ways to track down the universe’s missing matter called dark matter; and search for planets around other stars.The new computing cluster improves access to computing for all Penn State researchers in the hopes of accelerating the pace of discovery across a broad spectrum of Science, Technology, Engineering, and Math through projects engaging the Penn State “Research Innovation with Scientists and Engineers (RISE)” CyberTeam (NSF OAC-2018299). The cluster is connected to the Open Science Grid bolstering the fabric of national cyberinfrastructure that supports competitive US research through sharing resources across universities. Penn State also plans to use this resource for annual summer schools for students focused on data analysis, computing, physics, and astronomy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目为宾夕法尼亚州立大学24个校区系统的研究人员建立了一个新的最先进的高吞吐量计算集群。 该集群由10个AMD EPYC节点组成,每个节点具有128个核心和一个A40 Nvidia GPU。引力和宇宙研究所以及计算和数据科学研究所的研究人员是该集群的优先用户,他们使用该计算机集群:通过分析数据来研究宇宙,以找到空间中称为引力波的涟漪;研究追踪宇宙中称为暗物质的失踪物质的新方法;并寻找其他恒星周围的行星。新的计算集群改善了所有宾夕法尼亚州立大学研究人员对计算的访问,希望加快科学、技术、工程、和数学通过参与宾夕法尼亚州立大学的项目“研究创新与科学家和工程师(上升)”网络团队(NSF OAC-2018299)。该集群连接到开放科学网格,通过在大学之间共享资源来支持具有竞争力的美国研究,从而加强国家网络基础设施的结构。宾州州立大学还计划利用这一资源为专注于数据分析、计算、物理和天文学的学生举办年度暑期学校。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chad Hanna其他文献
Searching for asymmetric and heavily precessing Binary Black Holes in the gravitational wave data from the LIGO and Virgo third Observing Run
在 LIGO 和 Virgo 第三次观测运行的引力波数据中寻找不对称和严重进动的双黑洞
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Stefano Schmidt;S. Caudill;J. Creighton;L. Tsukada;Anarya Ray;S. Adhicary;Pratyusava Baral;A. Baylor;Kipp Cannon;B. Cousins;B. Ewing;Heather Fong;Richard N. George;P. Godwin;Chad Hanna;Reiko Harada;Yun;R. Huxford;Prathamesh Joshi;J. Kennington;Soichiro Kuwahara;A. K. Li;R. Magee;D. Meacher;C. Messick;S. Morisaki;D. Mukherjee;Wanting Niu;A. Pace;C. Posnansky;S. Sachdev;S. Sakon;Divya R. Singh;Urja Shah;R. Tapia;T. Tsutsui;K. Ueno;A. Viets;L. Wade;M. Wade - 通讯作者:
M. Wade
Searching for gravitational waves from compact binary coalescence
- DOI:
- 发表时间:
2011-04 - 期刊:
- 影响因子:0
- 作者:
Chad Hanna - 通讯作者:
Chad Hanna
Chad Hanna的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chad Hanna', 18)}}的其他基金
CC* Data Storage: Cost-effective Attached Storage for High throughput computing using Homo- geneous IT (CASH HIT) supporting Penn State Science, the Open Science Grid and LIGO
CC* 数据存储:使用同质 IT (CASH HIT) 实现高吞吐量计算的经济高效附加存储,支持宾夕法尼亚州立大学科学学院、开放科学网格和 LIGO
- 批准号:
2346596 - 财政年份:2024
- 资助金额:
$ 39.97万 - 项目类别:
Standard Grant
Discovering Neutron Stars and Black Holes with LIGO
利用 LIGO 发现中子星和黑洞
- 批准号:
2308881 - 财政年份:2023
- 资助金额:
$ 39.97万 - 项目类别:
Standard Grant
Framework: An A+ Framework for Multimessenger Astrophysics Discoveries through Real-Time Gravitational Wave Detection
框架:通过实时引力波探测进行多信使天体物理学发现的框架
- 批准号:
2103662 - 财政年份:2021
- 资助金额:
$ 39.97万 - 项目类别:
Standard Grant
CC* Team: Research Innovation with Scientists and Engineers (RISE)
CC* 团队:科学家和工程师的研究创新 (RISE)
- 批准号:
2018299 - 财政年份:2020
- 资助金额:
$ 39.97万 - 项目类别:
Continuing Grant
Discovering Black Holes and Neutron Stars with LIGO
利用 LIGO 发现黑洞和中子星
- 批准号:
2011865 - 财政年份:2020
- 资助金额:
$ 39.97万 - 项目类别:
Standard Grant
Scalable Cyberinfrastructure for Early Warning Gravitational Wave Detections
用于早期预警引力波探测的可扩展网络基础设施
- 批准号:
1841480 - 财政年份:2018
- 资助金额:
$ 39.97万 - 项目类别:
Standard Grant
SI2-SSE: Hearing the Signal through the Static: Realtime Noise Reduction in the Hunt for Binary Black Holes and other Gravitational Wave Transients
SI2-SSE:通过静电听到信号:寻找双黑洞和其他引力波瞬变过程中的实时降噪
- 批准号:
1642391 - 财政年份:2016
- 资助金额:
$ 39.97万 - 项目类别:
Continuing Grant
CAREER: Enabling Multimessenger Astrophysics with Real-Time Gravitational Wave Detection
职业:通过实时引力波检测实现多信使天体物理学
- 批准号:
1454389 - 财政年份:2015
- 资助金额:
$ 39.97万 - 项目类别:
Continuing Grant
相似海外基金
CC* Campus Compute: UTEP Cyberinfrastructure for Scientific and Machine Learning Applications
CC* 校园计算:用于科学和机器学习应用的 UTEP 网络基础设施
- 批准号:
2346717 - 财政年份:2024
- 资助金额:
$ 39.97万 - 项目类别:
Standard Grant
SHF: Small: Redesigning the Memory System in the Era of Compute Express Link
SHF:小型:重新设计 Compute Express Link 时代的内存系统
- 批准号:
2333049 - 财政年份:2024
- 资助金额:
$ 39.97万 - 项目类别:
Standard Grant
CC* Campus Compute: Building a Computational Cluster for Scientific Discovery
CC* 校园计算:构建科学发现计算集群
- 批准号:
2346673 - 财政年份:2024
- 资助金额:
$ 39.97万 - 项目类别:
Standard Grant
CC* Campus Compute: Interdisciplinary GPU-Enabled Compute
CC* 校园计算:支持 GPU 的跨学科计算
- 批准号:
2346343 - 财政年份:2024
- 资助金额:
$ 39.97万 - 项目类别:
Standard Grant
MYRTUS: Multi-layer 360° dYnamic orchestrion and interopeRable design environmenT for compute-continUum Systems
MYRTUS:用于连续计算系统的多层 360° 动态编排和可互操作设计环境
- 批准号:
10087666 - 财政年份:2024
- 资助金额:
$ 39.97万 - 项目类别:
EU-Funded
CAREER: Reinventing Computer Vision through Bio-inspired Retinomorphic Vision Sensors, Corticomorphic Compute-In-Memory Processors and Event-based Algorithms
职业:通过仿生视网膜形态视觉传感器、皮质形态内存计算处理器和基于事件的算法重塑计算机视觉
- 批准号:
2338171 - 财政年份:2024
- 资助金额:
$ 39.97万 - 项目类别:
Continuing Grant
Equipment: CC* Campus Compute: A High-Performance Computing System for Research and Education in Arkansas
设备:CC* 校园计算:用于阿肯色州研究和教育的高性能计算系统
- 批准号:
2346752 - 财政年份:2024
- 资助金额:
$ 39.97万 - 项目类别:
Standard Grant
Research Infrastructure: CC* Campus Compute: Lawrence 2.0: Advancing Multi-Disciplinary Research and Education in South Dakota
研究基础设施:CC* 校园计算:Lawrence 2.0:推进南达科他州的多学科研究和教育
- 批准号:
2346643 - 财政年份:2024
- 资助金额:
$ 39.97万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
- 批准号:
2312886 - 财政年份:2023
- 资助金额:
$ 39.97万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
- 批准号:
2312884 - 财政年份:2023
- 资助金额:
$ 39.97万 - 项目类别:
Standard Grant