CAREER: Nonlocal partial differential equations in collective dynamics and fluid flow
职业:集体动力学和流体流动中的非局部偏微分方程
基本信息
- 批准号:2238219
- 负责人:
- 金额:$ 40.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The collective behaviors of large groups of similar animals, e.g., birds, insects, or fishes, are ubiquitous in nature. In recent times, the mathematical study of collective dynamics has become an active and fast-growing field of research. Many mathematical models of collective behavior rely on partial differential equations with nonlocal interactions to describe the resulting emergent behavior. It turns out that these models are intimately connected to other models traditionally used in fluid dynamics. The goal of this project is to study several models of nonlocal partial differential equations to model collective behavior or fluid flows, and to develop novel and robust analytical techniques to understand the collective behaviors driven by nonlocal structures. The training and professional development of graduate students and young researchers is an integral part of the project. This project studies three families of partial differential equations with shared nonlocal structures that can affect the solutions of the equations: existence, uniqueness, regularity, and long-time asymptotic behaviors. The first problem is on the compressible Euler system with nonlinear velocity alignment, which describes the remarkable flocking phenomenon in animal swarms. Global phenomena and asymptotic behaviors of the system will be investigated, with a focus on the nonlinearity in the velocity alignment. The second problem is on the pressureless Euler system, aiming at the long-standing question of the uniqueness of weak solutions. The plan is to approximate the system by the relatively well-studied Euler-alignment system in collective dynamics. The third problem is on the Euler-Monge-Ampère system which is closely related to the incompressible Euler equations in fluid dynamics. The embedded nonlocal geometric structure of the system will be explored, with interesting applications in optimal transport and mean-field games.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大群相似动物的集体行为,例如,鸟类、昆虫或鱼类在自然界中无处不在。近年来,集体动力学的数学研究已成为一个活跃和快速增长的研究领域。许多集体行为的数学模型依赖于具有非局部相互作用的偏微分方程来描述由此产生的涌现行为。事实证明,这些模型与传统上用于流体动力学的其他模型密切相关。该项目的目标是研究几种非局部偏微分方程模型来模拟集体行为或流体流动,并开发新颖而强大的分析技术来理解由非局部结构驱动的集体行为。研究生和青年研究人员的培训和专业发展是该项目的一个组成部分。本计画主要研究三类具有共同非局部结构的偏微分方程,这些非局部结构会影响方程解的存在性、唯一性、正则性及长时间渐近性态。第一个问题是关于具有非线性速度排列的可压缩欧拉方程组,它描述了动物群体中显著的群集现象。我们将探讨系统的整体现象与渐近行为,并着重探讨速度调整中的非线性。第二个问题是关于无压欧拉方程组,针对长期存在的弱解的唯一性问题。我们的计划是近似系统的研究相对较好的欧拉对齐系统的集体动力学。第三个问题是关于Euler-Monge-Ampère系统,它与流体力学中的不可压缩Euler方程密切相关。嵌入的非局部几何结构的系统将被探索,在最佳运输和平均场game.This奖项反映了NSF的法定使命的有趣的应用程序,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Changhui Tan其他文献
First-order aggregation models with alignment
具有对齐功能的一阶聚合模型
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
R. Fetecau;Weiran Sun;Changhui Tan - 通讯作者:
Changhui Tan
Hierarchical Construction of Bounded Solutions of div U=F in Critical Regularity Spaces
临界正则空间中div U=F有界解的层次构造
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
E. Tadmor;Changhui Tan - 通讯作者:
Changhui Tan
On the global classical solution to compressible Euler system with singular velocity alignment
奇异速度对准的可压缩欧拉系统的全局经典解
- DOI:
10.4310/maa.2021.v28.n2.a3 - 发表时间:
2020-07 - 期刊:
- 影响因子:0.3
- 作者:
Li Chen;Changhui Tan;Lining Tong - 通讯作者:
Lining Tong
Singularity formation for a fluid mechanics model with nonlocal velocity
- DOI:
10.4310/cms.2019.v17.n7.a2 - 发表时间:
2017-08 - 期刊:
- 影响因子:1
- 作者:
Changhui Tan - 通讯作者:
Changhui Tan
An Exact Rescaling Velocity Method for some Kinetic Flocking Models
一些动力学植绒模型的精确重缩放速度方法
- DOI:
10.1137/140993430 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Thomas Rey;Changhui Tan - 通讯作者:
Changhui Tan
Changhui Tan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Changhui Tan', 18)}}的其他基金
Nonlocal Transport Equations in Fluids, Swarming, and Traffic Flows
流体、蜂群和交通流中的非局域传输方程
- 批准号:
2108264 - 财政年份:2021
- 资助金额:
$ 40.42万 - 项目类别:
Continuing Grant
Regularity and Singularity Formation in Swarming and Related Fluid Models
集群及相关流体模型中的规律性和奇异性形成
- 批准号:
1853001 - 财政年份:2018
- 资助金额:
$ 40.42万 - 项目类别:
Continuing Grant
Regularity and Singularity Formation in Swarming and Related Fluid Models
集群及相关流体模型中的规律性和奇异性形成
- 批准号:
1815667 - 财政年份:2018
- 资助金额:
$ 40.42万 - 项目类别:
Continuing Grant
相似国自然基金
基于Nonlocal的MRI脑肿瘤图像分割方法的研究
- 批准号:11426205
- 批准年份:2014
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Nonlocal and Anisotropic Partial Differential Equations in Mathematical Biology
数学生物学中的非局部和各向异性偏微分方程
- 批准号:
RGPIN-2017-04158 - 财政年份:2021
- 资助金额:
$ 40.42万 - 项目类别:
Discovery Grants Program - Individual
Nonlocal and Anisotropic Partial Differential Equations in Mathematical Biology
数学生物学中的非局部和各向异性偏微分方程
- 批准号:
RGPIN-2017-04158 - 财政年份:2020
- 资助金额:
$ 40.42万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear and Nonlocal Partial Differential Equations
非线性和非局部偏微分方程
- 批准号:
1907221 - 财政年份:2019
- 资助金额:
$ 40.42万 - 项目类别:
Standard Grant
CAREER: Nonlocal partial differential equations in collisional kinetic theory
职业:碰撞动力学理论中的非局部偏微分方程
- 批准号:
2019335 - 财政年份:2019
- 资助金额:
$ 40.42万 - 项目类别:
Continuing Grant
Nonlocal and Anisotropic Partial Differential Equations in Mathematical Biology
数学生物学中的非局部和各向异性偏微分方程
- 批准号:
RGPIN-2017-04158 - 财政年份:2019
- 资助金额:
$ 40.42万 - 项目类别:
Discovery Grants Program - Individual
Nonlocal and Anisotropic Partial Differential Equations in Mathematical Biology
数学生物学中的非局部和各向异性偏微分方程
- 批准号:
RGPIN-2017-04158 - 财政年份:2018
- 资助金额:
$ 40.42万 - 项目类别:
Discovery Grants Program - Individual
Singularity and Asymptotics for Nonlocal Partial Differential Equations
非局部偏微分方程的奇异性和渐近性
- 批准号:
1715418 - 财政年份:2017
- 资助金额:
$ 40.42万 - 项目类别:
Continuing Grant
Nonlocal Partial Differential Equations: entropies, gradient flows, phase transitions and applications
非局部偏微分方程:熵、梯度流、相变和应用
- 批准号:
EP/P031587/1 - 财政年份:2017
- 资助金额:
$ 40.42万 - 项目类别:
Research Grant
Nonlocal and Anisotropic Partial Differential Equations in Mathematical Biology
数学生物学中的非局部和各向异性偏微分方程
- 批准号:
RGPIN-2017-04158 - 财政年份:2017
- 资助金额:
$ 40.42万 - 项目类别:
Discovery Grants Program - Individual
Fractional Partial Differential Equations and Related Nonlocal Models: Fast Numerical Methods, Analysis, and Application
分数阶偏微分方程及相关非局部模型:快速数值方法、分析和应用
- 批准号:
1620194 - 财政年份:2016
- 资助金额:
$ 40.42万 - 项目类别:
Standard Grant