Tunnel Junction Based AlGaN Ultraviolet Lasers

基于隧道结的 AlGaN 紫外激光器

基本信息

  • 批准号:
    2034140
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-12-01 至 2023-11-30
  • 项目状态:
    已结题

项目摘要

While visible blue lasers have been demonstrated with excellent performance, realizing ultraviolet lasers at wavelengths shorter than 300 nm is still challenging despite efforts over more than a decade by various research groups. The principal problem for electrically-powered lasers is related to achieving a reasonable electrical p-conductivity in laser materials through which electrical current will flow. This makes it challenging to operate lasers at a reasonable electrical power. This project proposes an innovative approach that utilizes tunnel junctions (TJs) which alleviates the p-conductivity problem of laser materials without sacrificing optical performance of the device. These short-wavelength ultraviolet lasers are recently found to be useful for sterilizing surfaces or objects, as one of the precautionary steps to prevent the global spread of the coronavirus (COVID-19). Arguably, this application could be enabled by light emitting diodes (LEDs) in this wavelength regime. However, energy-inefficient LEDs achieved to-date are large, complicated, and expensive, which essentially limits their applicability in these key areas. In addition to high impact research advancement, this project will also support interdisciplinary education activities in nanoscience and nanotechnology. Because the proposed research project crosses different disciplines of science and engineering, such as optics, materials science, electrical engineering, physics, and chemistry, it will lead to a range of potential, hands-on learning activities that can engage students of varying backgrounds. In addition, the scientific insights and technological advances stemming from the research will also broadly impact the field of photonics by enabling operation in this underdeveloped spectral region. There is a tremendous need for electrically-pumped (EP) and continuous-wave (CW) operating AlGaN-based diode lasers in the ultraviolet (UV)­B (320­280 nm) and UV-C (280–200 nm) wavelength regimes due to a wide range of emerging applications including plant growth lighting, water sterilization, trace gas sensing, curing polymers, and stimulating the formation of anti-cancerogenic substances. The primary objective of the proposed research is to design and demonstrate tunnel-injected EP and CW-operating UV lasers with wavelengths of emission ranging from 320 nm to 280 nm. P-type doping and formation of low-resistive p-ohmic contacts are the key challenges for electrically-pumped UV laser diodes. This work proposes to use novel interband tunnel junctions for ultra-wide band gap AlGaN up to 70% aluminum composition in order to overcome this principal challenge. The work performed within this project will generate new fundamental knowledge on the AlGaN-material system and its several important properties including refractive index, carrier interband tunneling through band-tail states and bandgap narrowing, as well as absorption in ultra-thin layers with quantum confinement. The proposed research involves a novel device concept to realize such highly demanding light sources based on the ultra-wide band gap materials. The device knowledge gained from this research will establish a foundation for demonstrating laser devices with emission in the entire deep-UV spectral regime. The early stage of the project aims to demonstrate broad-area Fabry-Pérot lasers using high-bandgap n­AlGaN cladding regions on both sides of the active region. The devices will then be tested in pulsed mode, which will help determine various unknown material properties of high Al composition structures. In the second stage of the project, this project aims to demonstrate application-suited CW-operating lasers by employing narrow­ridge structures with optimized epitaxial structures. The radically new approach proposed here will enable new scientific understanding in the areas of ultra-wide band gap materials and optical devices as well as could establish the platform for a new class of AlGaN-based UV laser technology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
虽然已经以出色的性能证明了可见的蓝色激光器,但在十多年来,各个研究小组在超过300 nm处的紫外线激光仍在挑战任务。电动激光器的主要问题与在激光材料中实现合理的电P导率有关,通过该电流将通过该激光材料流动。这使得以合理的电力操作激光器是挑战。该项目提出了一种创新的方法,该方法利用隧道连接(TJ)减轻激光材料的P-导率问题而不牺牲设备的光学性能。这些短波长紫外线激光器最近被发现可用于灭菌表面或物体,这是防止冠状病毒全球扩散的预防步骤之一(COVID-19)。可以说,可以通过在此波长状态下发射二极管(LED)来启用此应用程序。但是,迄今为止实现的能源感知的LED是大型,复杂且昂贵的,这实质上限制了它们在这些关键领域的适用性。除了高影响研究进步外,该项目还将支持纳米科学和纳米技术的跨学科教育活动。由于拟议的研究项目跨越了科学和工程学的不同学科,例如光学,材料科学,电气工程,物理和化学,因此它将带来一系列潜在的,动手的学习活动,可以吸引背景不同的学生。此外,研究所引起的科学见解和技术进步还将通过在这个欠发达的光谱区域实现运行来广泛影响光子学领域。非常需要在紫外线(UV)B(UV)B(320280 nm)和UV-C(280-200 nm)波长中的电气泵(EP)和连续波(CW)基于Algan的二极管激光器,这是由于植物生长,水平的刺激,促进剂量的刺激性,促进了刺激性,促进了较高的范围抗癌物质。拟议的研究的主要目标是设计和证明注射隧道的EP和CW操作的紫外线激光器,其发射范围为320 nm至280 nm。 P型掺杂和低耐性P-OHMIC接触是电泵式紫外线激光二极管的关键挑战。这项工作建议使用新型的频带隧道连接处,以实现高达70%铝合作的超宽带隙,以克服这一主要挑战。该项目中执行的工作将在Algan物质系统及其几个重要特性上产生新的基本知识,包括折射率指数,通过带尾态和带隙狭窄的托运带式隧道以及具有量子限制的超薄层中的滥用。拟议的研究涉及一种新型的设备概念,以实现基于超宽带隙材料的高度要求的光源。从这项研究中获得的设备知识将为展示在整个Deep-UV光谱状态中发射的激光设备的基础。该项目的早期阶段旨在证明使用活跃区域两侧的高式纳尔根式覆层区域的宽区域Fabry-Pérot激光器。然后将以脉冲模式测试设备,这将有助于确定高Al组成结构的各种未知材料特性。在项目的第二阶段,该项目旨在通过使用具有优化的外延结构的窄龙结构来证明具有应用的CW操作激光器。此处提出的根本新方法将在超宽的带隙材料和光学设备的领域具有新的科学理解,并可以为新的基于Algan的UV激光技术建立平台。该奖项反映了NSF的法定任务,并通过使用该基金会的智力功能和广泛的影响来评估NSF的法定任务,并被视为珍贵的支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Interband tunnel junctions for AlGaN Ultra-Violet light emitting diodes (Conference Presentation)
AlGaN 紫外发光二极管的带间隧道结(会议演示)
  • DOI:
    10.1117/12.2658149
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dominic Merwin Xavier, Agnes Maneesha;Ghosh, Arnob;Rahman, Sheikh Ifatur;Arafin, Shamsul;Rajan, Siddharth
  • 通讯作者:
    Rajan, Siddharth
Low voltage drop AlGaN UV-A laser structures with transparent tunnel junctions and optimized quantum wells
具有透明隧道结和优化量子阱的低压降 AlGaN UV-A 激光器结构
  • DOI:
    10.1088/1361-6463/ad039c
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ghosh, Arnob;Dominic Merwin Xavier, Agnes Maneesha;Hasan, Syed M. N.;Rahman, Sheikh Ifatur;Blackston, Alex;Allerman, Andrew;Myers, Roberto C.;Rajan, Siddharth;Arafin, Shamsul
  • 通讯作者:
    Arafin, Shamsul
Demonstration of AlGaN Tunnel Junction p-Down UV Light Emitting Diodes
AlGaN 隧道结 p-Down 紫外发光二极管演示
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dominic Merwin Xavier, Agnes Maneesha;Ghosh, Arnob: Rahman;Allerman, Andrew;Arafin, Shamsul;Rajan, Siddharth
  • 通讯作者:
    Rajan, Siddharth
Multi-active region AlGaN UV LEDs with transparent tunnel junctions
具有透明隧道结的多有源区 AlGaN UV LED
  • DOI:
    10.35848/1882-0786/acea1b
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Dominic Merwin Xavier, Agnes Maneesha;Ghosh, Arnob;Rahman, Sheikh Ifatur;Allerman, Andrew;Verma, Darpan;Myers, Roberto C.;Arafin, Shamsul;Rajan, Siddharth
  • 通讯作者:
    Rajan, Siddharth
Towards Electrically-Pumped AlGaN UV-A Lasers with Transparent Tunnel Junctions
具有透明隧道结的电泵浦 AlGaN UV-A 激光器
  • DOI:
    10.1364/cleo_si.2023.sf2q.5
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ghosh, Arnob;Xavier, Agnes M.;Rahman, Sheikh Ifatur;Allerman, Andrew;Rajan, Siddharth;Arafin, Shamsul
  • 通讯作者:
    Arafin, Shamsul
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shamsul Arafin其他文献

Luminescence and Raman spectroscopic properties of cubic boron nitride grown by drop-casting technique
  • DOI:
    10.1016/j.jcrysgro.2022.126781
  • 发表时间:
    2022-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Mohammad Mahafuzur Rahaman;Shantanu Saha;Syed M.N. Hasan;Weicheng You;Arnob Ghosh;Md Saiful Islam Sumon;S.K. Shafaat Saud Nikor;Benjamin Freeman;Shrivatch Sankar;Hendrik Colijn;Sharif Md. Sadaf;Jivtesh Garg;Shamsul Arafin
  • 通讯作者:
    Shamsul Arafin
An All-Optical Neuron for Scaling Integrated Photonic Neural Networks
用于扩展集成光子神经网络的全光神经元
  • DOI:
    10.1109/ipc57732.2023.10360538
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Md. Saiful Islam Sumon;Mihai Crisan;Weicheng You;Shrivatch Sankar;Imad I. Faruque;Sarvagya Dwivedi;Shamsul Arafin
  • 通讯作者:
    Shamsul Arafin

Shamsul Arafin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shamsul Arafin', 18)}}的其他基金

U.S.-Ireland R&D Partnership - Visible Light-wave Generation and Manipulation through Non-Linear Waveguide Technology (VIBRANT)
美国-爱尔兰 R
  • 批准号:
    2310869
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: GaSb-based Photonic Integrated Circuits for Short- and Mid-Wave Infrared Applications
职业:用于短波和中波红外应用的 GaSb 基光子集成电路
  • 批准号:
    2144375
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
EAGER: Toward Monolithic Optically-Pumped Single-Photon Sources Based on Deterministic InGaN Quantum Dots in GaN Nanowires
EAGER:基于 GaN 纳米线中确定性 InGaN 量子点的单片光泵浦单光子源
  • 批准号:
    2020015
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似国自然基金

紧密连接蛋白PARD3下调介导黏膜上皮屏障破坏激活STAT3/SNAI2通路促进口腔白斑病形成及进展的机制研究
  • 批准号:
    82370954
  • 批准年份:
    2023
  • 资助金额:
    47.00 万元
  • 项目类别:
    面上项目
靶向DNA Holliday junction结构新配体的发现及抗非BRCA突变型三阴性乳腺癌的机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
靶向DNA Holliday junction结构新配体的发现及抗非BRCA突变型三阴性乳腺癌的机制研究
  • 批准号:
    82104006
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
Holliday Junction解离酶RuvA在分枝杆菌噬菌体抗性中的作用与分子机理
  • 批准号:
    82072246
  • 批准年份:
    2020
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目
上皮层形态发生过程中远程机械力传导的分子作用机制
  • 批准号:
    31900563
  • 批准年份:
    2019
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Theoretical Study of Neuromorphic Devices Based on Two-dimensional-based Magnetic Tunnel Junctions
基于二维磁隧道结的神经形态器件的理论研究
  • 批准号:
    22KJ2092
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Spintronic Spectrum Analyzer and Limiter based on Tunable Magnetic Tunnel Junction Arrays
基于可调谐磁隧道结阵列的自旋电子频谱分析仪和限制器
  • 批准号:
    2203242
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Frontier development of spintronics-based synapse and neuron for artificial neural networks
基于自旋电子学的人工神经网络突触和神经元的前沿发展
  • 批准号:
    19J12206
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of Next-Generation Magnetic Field Sensors Based on Magnetic Tunnel Junction Technology
基于磁隧道结技术的下一代磁场传感器的开发
  • 批准号:
    419045-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 40万
  • 项目类别:
    Collaborative Research and Development Grants
Development of Next-Generation Magnetic Field Sensors Based on Magnetic Tunnel Junction Technology
基于磁隧道结技术的下一代磁场传感器的开发
  • 批准号:
    419045-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 40万
  • 项目类别:
    Collaborative Research and Development Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了