Tunnel Junction Based AlGaN Ultraviolet Lasers

基于隧道结的 AlGaN 紫外激光器

基本信息

  • 批准号:
    2034140
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-12-01 至 2023-11-30
  • 项目状态:
    已结题

项目摘要

While visible blue lasers have been demonstrated with excellent performance, realizing ultraviolet lasers at wavelengths shorter than 300 nm is still challenging despite efforts over more than a decade by various research groups. The principal problem for electrically-powered lasers is related to achieving a reasonable electrical p-conductivity in laser materials through which electrical current will flow. This makes it challenging to operate lasers at a reasonable electrical power. This project proposes an innovative approach that utilizes tunnel junctions (TJs) which alleviates the p-conductivity problem of laser materials without sacrificing optical performance of the device. These short-wavelength ultraviolet lasers are recently found to be useful for sterilizing surfaces or objects, as one of the precautionary steps to prevent the global spread of the coronavirus (COVID-19). Arguably, this application could be enabled by light emitting diodes (LEDs) in this wavelength regime. However, energy-inefficient LEDs achieved to-date are large, complicated, and expensive, which essentially limits their applicability in these key areas. In addition to high impact research advancement, this project will also support interdisciplinary education activities in nanoscience and nanotechnology. Because the proposed research project crosses different disciplines of science and engineering, such as optics, materials science, electrical engineering, physics, and chemistry, it will lead to a range of potential, hands-on learning activities that can engage students of varying backgrounds. In addition, the scientific insights and technological advances stemming from the research will also broadly impact the field of photonics by enabling operation in this underdeveloped spectral region. There is a tremendous need for electrically-pumped (EP) and continuous-wave (CW) operating AlGaN-based diode lasers in the ultraviolet (UV)­B (320­280 nm) and UV-C (280–200 nm) wavelength regimes due to a wide range of emerging applications including plant growth lighting, water sterilization, trace gas sensing, curing polymers, and stimulating the formation of anti-cancerogenic substances. The primary objective of the proposed research is to design and demonstrate tunnel-injected EP and CW-operating UV lasers with wavelengths of emission ranging from 320 nm to 280 nm. P-type doping and formation of low-resistive p-ohmic contacts are the key challenges for electrically-pumped UV laser diodes. This work proposes to use novel interband tunnel junctions for ultra-wide band gap AlGaN up to 70% aluminum composition in order to overcome this principal challenge. The work performed within this project will generate new fundamental knowledge on the AlGaN-material system and its several important properties including refractive index, carrier interband tunneling through band-tail states and bandgap narrowing, as well as absorption in ultra-thin layers with quantum confinement. The proposed research involves a novel device concept to realize such highly demanding light sources based on the ultra-wide band gap materials. The device knowledge gained from this research will establish a foundation for demonstrating laser devices with emission in the entire deep-UV spectral regime. The early stage of the project aims to demonstrate broad-area Fabry-Pérot lasers using high-bandgap n­AlGaN cladding regions on both sides of the active region. The devices will then be tested in pulsed mode, which will help determine various unknown material properties of high Al composition structures. In the second stage of the project, this project aims to demonstrate application-suited CW-operating lasers by employing narrow­ridge structures with optimized epitaxial structures. The radically new approach proposed here will enable new scientific understanding in the areas of ultra-wide band gap materials and optical devices as well as could establish the platform for a new class of AlGaN-based UV laser technology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
虽然可见光蓝光激光器已被证明具有优异的性能,但实现波长短于300 nm的紫外激光器仍然具有挑战性,尽管各个研究小组已经努力了十多年。电驱动激光器的主要问题涉及在电流将流过的激光材料中实现合理的p电导率。这使得在合理的电功率下操作激光器具有挑战性。该项目提出了一种利用隧道结(TJ)的创新方法,该方法在不牺牲器件光学性能的情况下解决了激光材料的p电导率问题。这些短波长紫外激光器最近被发现可用于对表面或物体进行消毒,作为预防冠状病毒(COVID-19)全球传播的预防措施之一。可以说,这种应用可以通过在这种波长范围内的发光二极管(LED)来实现。然而,迄今为止实现的节能LED体积大、复杂且昂贵,这基本上限制了它们在这些关键领域的应用。除了高影响力的研究进展,该项目还将支持纳米科学和纳米技术的跨学科教育活动。由于拟议的研究项目跨越科学和工程的不同学科,如光学,材料科学,电气工程,物理和化学,它将导致一系列潜在的,动手学习活动,可以吸引不同背景的学生。此外,这项研究所带来的科学见解和技术进步也将通过在这一欠发达的光谱区域实现操作来广泛影响光子学领域。由于包括植物生长照明、水消毒、痕量气体感测、固化聚合物和刺激抗癌物质形成的广泛新兴应用,在紫外(UV)线B(320 - 280 nm)和UV-C(280-200 nm)波长范围内,存在对电泵浦(EP)和连续波(CW)操作的AlGaN基二极管激光器的巨大需求。拟议的研究的主要目标是设计和演示隧道注入EP和CW操作的紫外激光器的发射波长范围从320 nm到280 nm。p型掺杂和低阻p型欧姆接触的形成是电泵浦紫外激光二极管的关键挑战。这项工作提出了使用新的带间隧道结的超宽带隙AlGaN高达70%的铝成分,以克服这一主要挑战。在该项目中进行的工作将产生关于AlGaN材料系统及其几个重要特性的新的基础知识,包括折射率,通过带尾态和带隙变窄的载流子带间隧穿,以及具有量子限制的超薄层中的吸收。拟议的研究涉及一种新的器件概念,以实现基于超宽带隙材料的高要求光源。从这项研究中获得的设备知识将为演示在整个深紫外光谱范围内发射的激光设备奠定基础。该项目的早期阶段旨在展示在有源区两侧使用高带隙n型AlGaN包层区域的大面积法布里-珀罗激光器。然后将在脉冲模式下对这些器件进行测试,这将有助于确定高Al成分结构的各种未知材料特性。在该项目的第二阶段,该项目旨在通过采用具有优化外延结构的窄脊结构来展示适合应用的CW操作激光器。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Interband tunnel junctions for AlGaN Ultra-Violet light emitting diodes (Conference Presentation)
AlGaN 紫外发光二极管的带间隧道结(会议演示)
  • DOI:
    10.1117/12.2658149
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dominic Merwin Xavier, Agnes Maneesha;Ghosh, Arnob;Rahman, Sheikh Ifatur;Arafin, Shamsul;Rajan, Siddharth
  • 通讯作者:
    Rajan, Siddharth
Low voltage drop AlGaN UV-A laser structures with transparent tunnel junctions and optimized quantum wells
具有透明隧道结和优化量子阱的低压降 AlGaN UV-A 激光器结构
  • DOI:
    10.1088/1361-6463/ad039c
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ghosh, Arnob;Dominic Merwin Xavier, Agnes Maneesha;Hasan, Syed M. N.;Rahman, Sheikh Ifatur;Blackston, Alex;Allerman, Andrew;Myers, Roberto C.;Rajan, Siddharth;Arafin, Shamsul
  • 通讯作者:
    Arafin, Shamsul
Demonstration of AlGaN Tunnel Junction p-Down UV Light Emitting Diodes
AlGaN 隧道结 p-Down 紫外发光二极管演示
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dominic Merwin Xavier, Agnes Maneesha;Ghosh, Arnob: Rahman;Allerman, Andrew;Arafin, Shamsul;Rajan, Siddharth
  • 通讯作者:
    Rajan, Siddharth
Multi-active region AlGaN UV LEDs with transparent tunnel junctions
具有透明隧道结的多有源区 AlGaN UV LED
  • DOI:
    10.35848/1882-0786/acea1b
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Dominic Merwin Xavier, Agnes Maneesha;Ghosh, Arnob;Rahman, Sheikh Ifatur;Allerman, Andrew;Verma, Darpan;Myers, Roberto C.;Arafin, Shamsul;Rajan, Siddharth
  • 通讯作者:
    Rajan, Siddharth
Towards Electrically-Pumped AlGaN UV-A Lasers with Transparent Tunnel Junctions
具有透明隧道结的电泵浦 AlGaN UV-A 激光器
  • DOI:
    10.1364/cleo_si.2023.sf2q.5
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ghosh, Arnob;Xavier, Agnes M.;Rahman, Sheikh Ifatur;Allerman, Andrew;Rajan, Siddharth;Arafin, Shamsul
  • 通讯作者:
    Arafin, Shamsul
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shamsul Arafin其他文献

Rh/InGaNsub1−/subemsubx/sub/emOemsubx/sub/em nanoarchitecture for light-driven methane reforming with carbon dioxide toward syngas
RH/INGANSUB1-/subemsubx/sub/sub/emoeemsubx/sub/sub/em纳米结构,用于轻型甲烷改革,二氧化碳朝向syngas
  • DOI:
    10.1016/j.scib.2024.02.020
  • 发表时间:
    2024-05-30
  • 期刊:
  • 影响因子:
    21.100
  • 作者:
    Yixin Li;Jinglin Li;Tianqi Yu;Liang Qiu;Syed M. Najib Hasan;Lin Yao;Hu Pan;Shamsul Arafin;Sharif Md. Sadaf;Lei Zhu;Baowen Zhou
  • 通讯作者:
    Baowen Zhou
Luminescence and Raman spectroscopic properties of cubic boron nitride grown by drop-casting technique
  • DOI:
    10.1016/j.jcrysgro.2022.126781
  • 发表时间:
    2022-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Mohammad Mahafuzur Rahaman;Shantanu Saha;Syed M.N. Hasan;Weicheng You;Arnob Ghosh;Md Saiful Islam Sumon;S.K. Shafaat Saud Nikor;Benjamin Freeman;Shrivatch Sankar;Hendrik Colijn;Sharif Md. Sadaf;Jivtesh Garg;Shamsul Arafin
  • 通讯作者:
    Shamsul Arafin
An All-Optical Neuron for Scaling Integrated Photonic Neural Networks
用于扩展集成光子神经网络的全光神经元
  • DOI:
    10.1109/ipc57732.2023.10360538
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Md. Saiful Islam Sumon;Mihai Crisan;Weicheng You;Shrivatch Sankar;Imad I. Faruque;Sarvagya Dwivedi;Shamsul Arafin
  • 通讯作者:
    Shamsul Arafin

Shamsul Arafin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shamsul Arafin', 18)}}的其他基金

U.S.-Ireland R&D Partnership - Visible Light-wave Generation and Manipulation through Non-Linear Waveguide Technology (VIBRANT)
美国-爱尔兰 R
  • 批准号:
    2310869
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: GaSb-based Photonic Integrated Circuits for Short- and Mid-Wave Infrared Applications
职业:用于短波和中波红外应用的 GaSb 基光子集成电路
  • 批准号:
    2144375
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
EAGER: Toward Monolithic Optically-Pumped Single-Photon Sources Based on Deterministic InGaN Quantum Dots in GaN Nanowires
EAGER:基于 GaN 纳米线中确定性 InGaN 量子点的单片光泵浦单光子源
  • 批准号:
    2020015
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似国自然基金

单分子FRET用于DNA折纸阵列中的anti-junction可控机械化 学耦合研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
靶向DNA Holliday junction结构新配体的发现及抗非BRCA突变型三阴性乳腺癌的机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Holliday Junction解离酶RuvA在分枝杆菌噬菌体抗性中的作用与分子机理
  • 批准号:
    82072246
  • 批准年份:
    2020
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目
Holliday junction解离酶Moc1调控叶绿体拟核分离的结构和分子机制研究
  • 批准号:
    31971222
  • 批准年份:
    2019
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
硫化叶菌Holliday junction解离酶Hje的体内功能与作用机制研究
  • 批准号:
    31470184
  • 批准年份:
    2014
  • 资助金额:
    88.0 万元
  • 项目类别:
    面上项目
柔嫩艾美耳球虫子孢子入侵关键结构 Moving Junction 的分子基础与功能研究
  • 批准号:
    31201699
  • 批准年份:
    2012
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
基于Junction tree推理的多运动平台分散式协同导航算法研究
  • 批准号:
    61203200
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
古菌Hjm解旋酶参与复制叉回退和Holliday junction加工的机制
  • 批准号:
    30870046
  • 批准年份:
    2008
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目

相似海外基金

Spintronic Spectrum Analyzer and Limiter based on Tunable Magnetic Tunnel Junction Arrays
基于可调谐磁隧道结阵列的自旋电子频谱分析仪和限制器
  • 批准号:
    2203242
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Development of Next-Generation Magnetic Field Sensors Based on Magnetic Tunnel Junction Technology
基于磁隧道结技术的下一代磁场传感器的开发
  • 批准号:
    419045-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 40万
  • 项目类别:
    Collaborative Research and Development Grants
Development of Next-Generation Magnetic Field Sensors Based on Magnetic Tunnel Junction Technology
基于磁隧道结技术的下一代磁场传感器的开发
  • 批准号:
    419045-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 40万
  • 项目类别:
    Collaborative Research and Development Grants
Development of a new magnetic tunnel junction structure using a monocrystalline spinel-based tunnel barrier
使用单晶尖晶石隧道势垒开发新型磁性隧道结结构
  • 批准号:
    22686066
  • 财政年份:
    2010
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
Demonstration of high-frequency oscillation in a Co-based Heusler alloy tunnel junction
钴基霍斯勒合金隧道结的高频振荡演示
  • 批准号:
    EP/H026126/1
  • 财政年份:
    2010
  • 资助金额:
    $ 40万
  • 项目类别:
    Research Grant
Study on spin-filter magnetic tunnel junction devices based on ferromagnetic semiconductor
基于铁磁半导体的自旋滤波器磁隧道结器件研究
  • 批准号:
    21560331
  • 财政年份:
    2009
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
SBIR Phase II: Picotesla Magnetic Sensor Using MgO-Based Magnetic Tunnel Junction Technology
SBIR 第二阶段:采用 MgO 磁隧道结技术的皮特斯拉磁传感器
  • 批准号:
    0750584
  • 财政年份:
    2008
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
SBIR Phase I: Picotesla Magnetic Sensor using MgO-Based Magnetic Tunnel Junction Technology
SBIR 第一阶段:使用基于 MgO 的磁隧道结技术的皮特斯拉磁传感器
  • 批准号:
    0637819
  • 财政年份:
    2007
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
NER: Characterizing and Modeling Magnetic Tunnel Junction Devices for a Spintronics-based Processor
NER:基于自旋电子学的处理器的磁隧道结器件的表征和建模
  • 批准号:
    0609023
  • 财政年份:
    2006
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
SBIR Phase I: Immunoassay Bio-chip Based on a Magnetic Tunnel Junction Sensor Array
SBIR 第一阶段:基于磁隧道结传感器阵列的免疫测定生物芯片
  • 批准号:
    0611054
  • 财政年份:
    2006
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了