Development of a Data-driven Magnetohydrodynamic Simulation Model for Flux-Emerging Active Regions Leading to Coronal Mass Ejections

开发数据驱动的磁流体动力学模拟模型,用于导致日冕物质抛射的通量新兴活动区域

基本信息

  • 批准号:
    2020703
  • 负责人:
  • 金额:
    $ 43.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Coronal mass ejections (CMEs) are major drivers of extreme space weather in the near-Earth space, hence a matter of serious concern for our modern, technologically-dependent society. The development of advanced models that could simulate the CME generation and propagation through interplanetary space is an important step toward our capability to predict the arrival times of CMEs at the Earth and their geo-effectiveness. CME generation models of varying complexity and accuracy have been developed for a number of decades now, ranging from over-pressured plasmoid models, such as the blob model, through to flux rope-based models with or without the necessity of energy build-up before the eruption. In almost all the cases, they have model parameters that need to be adjusted from one event to another. This 3-year project aims to develop a self-consistent, data-driven magnetohydrodynamics (MHD) simulation model for CMEs extending from lower chromosphere to 1 AU that is entirely based on first principles with minimum setup effort and free model parameters. This 3-year research investigation is also expected to increase the public awareness about space weather. As part of the project, the team will develop a website, which will be self-explanatory about CMEs and their role in space weather, including images based on the original project’s results that will be regularly posted. As such, it will provide a valuable educational tool to the general public. The project team will archive their data sets and share them with interested parties, such as different space physics and astrophysics groups on request. Hence, their new model will contribute to the space weather forecasting modeling efforts as a valuable scientific tool for the solar-heliospheric community at large. The PI of the project is the Program Coordinator of the Heliophysics REU program at the University of Alabama in Huntsville (UAH). There are also other summer internship programs ongoing at the UAH’s Department of Space Science and Center for Space Plasma and Aeronomic Research (CSPAR). Within the framework of these programs, the project team will offer compelling research projects to undergraduate students at the UAH, giving preference to students from underrepresented minorities. The research and EPO agenda of this project supports the Strategic Goals of the AGS Division in discovery, learning, diversity, and interdisciplinary research.This 3-year project aims to develop a new data-driven MHD simulation model for CMEs extending from lower chromosphere to 1 AU that is entirely based on first principles with minimum setup effort and free model parameters. This new model, which will be driven by vector magnetograms on the photosphere (taken by SDO’s HMI) through a physically-consistent characteristic boundary condition formulation, will track the evolution of active regions (ARs), mainly the build-up of free energy and magnetic helicity into the ARs through flux emergences. The main goal of the project team is to obtain the formation of flux ropes near polarity inversion lines and eventually their eruptions resulting from the torus instability. The investigators will then follow the CME propagation through the corona and inner heliosphere up to 1 AU and validate their results with various spacecraft data at every stage. They have already developed separately their local simulation model consisting of lower chromosphere, transition region, and lower corona and global simulation model covering global corona and inner heliosphere within our Multi-Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS) code. During this project, the team will couple the local and global components of their simulation model.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
日冕物质抛射(CME)是近地空间极端太空天气的主要驱动因素,因此是我们现代、技术依赖的社会严重关注的问题。 开发能够模拟日冕物质抛射在行星际空间中产生和传播的先进模型,是我们预测日冕物质抛射到达地球时间及其地理有效性的能力的重要一步。 不同复杂性和准确性的日冕物质抛射生成模型已经发展了数十年,从超压等离子体模型(例如斑点模型)到基于磁通绳的模型,无论是否需要在喷发前积累能量。 在几乎所有情况下,它们都有需要从一个事件调整到另一事件的模型参数。 这个为期 3 年的项目旨在开发一个自洽、数据驱动的磁流体动力学 (MHD) 模拟模型,适用于从较低色球层延伸到 1 个天文单位的日冕物质抛射,该模型完全基于第一原理,具有最小的设置工作量和免费的模型参数。 这项为期三年的研究调查预计还将提高公众对太空天气的认识。 作为该项目的一部分,该团队将开发一个网站,该网站将不言自明地介绍日冕物质抛射及其在空间天气中的作用,包括基于原始项目结果的图像,这些图像将定期发布。 因此,它将为公众提供一个有价值的教育工具。 项目团队将存档他们的数据集,并根据要求与感兴趣的各方共享,例如不同的空间物理学和天体物理学小组。 因此,他们的新模型将有助于空间天气预报建模工作,成为整个太阳-日光层界的宝贵科学工具。 该项目的 PI 是亨茨维尔阿拉巴马大学 (UAH) 太阳物理学 REU 项目的项目协调员。 UAH 空间科学系和空间等离子体与航空研究中心 (CSPAR) 正在进行其他暑期实习项目。 在这些项目的框架内,项目团队将为 UAH 的本科生提供引人注目的研究项目,并优先考虑来自代表性不足的少数族裔的学生。 该项目的研究和 EPO 议程支持 AGS 部门在发现、学习、多样性和跨学科研究方面的战略目标。这个为期 3 年的项目旨在为 CME 开发一种新的数据驱动的 MHD 模拟模型,从较低色球层延伸到 1 个天文单位,该模型完全基于第一原理,具有最小的设置工作量和免费的模型参数。 这个新模型将通过物理一致的特征边界条件公式,由光球上的矢量磁图(由 SDO 的 HMI 拍摄)驱动,将跟踪活动区域 (AR) 的演化,主要是通过通量出现在 AR 中积累自由能和磁螺旋度。 该项目团队的主要目标是获得极性反转线附近磁通绳的形成,以及最终由于环面不稳定性而导致的磁绳喷发。 然后,研究人员将跟踪日冕物质抛射穿过日冕和内日光层的传播直至 1 个天文单位,并在每个阶段使用各种航天器数据验证他们的结果。 他们已经在我们的多尺度流体动力学模拟套件 (MS-FLUKSS) 代码中分别开发了由较低色球层、过渡区和较低日冕组成的局部模拟模型以及覆盖全球日冕和内日光层的全局模拟模型。 在该项目期间,该团队将结合其模拟模型的本地和全球组件。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Are the Brightest Coronal Loops Always Rooted in Mixed-polarity Magnetic Flux?
  • DOI:
    10.3847/1538-4357/abd176
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Tiwari;Caroline L. Evans;N. Panesar;A. Prasad;R. Moore
  • 通讯作者:
    S. Tiwari;Caroline L. Evans;N. Panesar;A. Prasad;R. Moore
Heating of the solar chromosphere in a sunspot light bridge by electric currents
  • DOI:
    10.1051/0004-6361/202141456
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    6.5
  • 作者:
    R. Louis;A. Prasad;C. Beck;D. Choudhary;M. S. Yalim
  • 通讯作者:
    R. Louis;A. Prasad;C. Beck;D. Choudhary;M. S. Yalim
A data-driven MHD model of the weakly-ionized chromosphere
  • DOI:
    10.1088/1742-6596/1620/1/012026
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mehmet Sarp Yalim;A. Prasad;N. Pogorelov;G. Zank;Q. Hu
  • 通讯作者:
    Mehmet Sarp Yalim;A. Prasad;N. Pogorelov;G. Zank;Q. Hu
Coronal Loop Heating by Nearly Incompressible Magnetohydrodynamic and Reduced Magnetohydrodynamic Turbulence Models
通过近不可压缩磁流体动力学和简化磁流体动力学湍流模型进行日冕环路加热
  • DOI:
    10.3847/1538-4357/acb151
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yalim, M. S.;Zank, G. P.;Asgari-Targhi, M.
  • 通讯作者:
    Asgari-Targhi, M.
Validation and Interpretation of a Three-dimensional Configuration of a Magnetic Cloud Flux Rope
  • DOI:
    10.3847/1538-4357/ac7803
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Q. Hu;Chunming Zhu;W. He;J. Qiu;L. Jian;A. Prasad
  • 通讯作者:
    Q. Hu;Chunming Zhu;W. He;J. Qiu;L. Jian;A. Prasad
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mehmet Yalim其他文献

クエン酸処理歯根面におけるヒト歯根膜由来線維芽細胞様細胞の初期付着について (in vitro)
人牙周膜来源的成纤维细胞样细胞在柠檬酸处理的牙根表面的初始粘附(体外)
Çeşitli Konsantrasyonlardaki Chlorhexidine Direkt İrrigasyonlarının Subgingival Floraya Etkileri
Çeşitli Konsantrasyonlardaki Chlorhexidine Direkt irigasyonlarının Subgingival Floraya Etkileri
  • DOI:
    10.17214/aot.19227
  • 发表时间:
    1985
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    G. Özcan;Köksal Baloş;Mehmet Yalim
  • 通讯作者:
    Mehmet Yalim

Mehmet Yalim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mehmet Yalim', 18)}}的其他基金

SHINE: Joule Heating as a Solar Active Region Atmosphere Heating Mechanism
SHINE:焦耳热作为太阳活动区大气加热机制
  • 批准号:
    2230633
  • 财政年份:
    2023
  • 资助金额:
    $ 43.72万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
  • 批准号:
    61373035
  • 批准年份:
    2013
  • 资助金额:
    77.0 万元
  • 项目类别:
    面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
高维数据的函数型数据(functional data)分析方法
  • 批准号:
    11001084
  • 批准年份:
    2010
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
  • 批准号:
    31060015
  • 批准年份:
    2010
  • 资助金额:
    25.0 万元
  • 项目类别:
    地区科学基金项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of a Physics-Data Driven Surface Flux Parameterization for Flow in Complex Terrain
开发物理数据驱动的复杂地形流动表面通量参数化
  • 批准号:
    2336002
  • 财政年份:
    2024
  • 资助金额:
    $ 43.72万
  • 项目类别:
    Continuing Grant
Development of Informatics Materials with an Awareness of the High School-University connection and a Learning Support Environment for Data-Driven Instruction
开发具有高中与大学联系意识的信息学材料和数据驱动教学的学习支持环境
  • 批准号:
    23H01019
  • 财政年份:
    2023
  • 资助金额:
    $ 43.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of data-driven multiple sound spot synthesis technology based on deep generative neural network models
基于深度生成神经网络模型的数据驱动多声点合成技术开发
  • 批准号:
    23K11177
  • 财政年份:
    2023
  • 资助金额:
    $ 43.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
EAGER: Development of a Hybrid Knowledge- and Data-Driven Approach to Guide the Design of Immunotherapeutic Cells
EAGER:开发混合知识和数据驱动的方法来指导免疫治疗细胞的设计
  • 批准号:
    2324742
  • 财政年份:
    2023
  • 资助金额:
    $ 43.72万
  • 项目类别:
    Continuing Grant
Collaborative Research: Advancing the Science of STEM Interest Development through Educational Gameplay with Machine Learning and Data-driven Interviews
合作研究:通过机器学习和数据驱动访谈的教育游戏推进 STEM 兴趣发展科学
  • 批准号:
    2301173
  • 财政年份:
    2023
  • 资助金额:
    $ 43.72万
  • 项目类别:
    Continuing Grant
Collaborative Research: Advancing the Science of STEM Interest Development through Educational Gameplay with Machine Learning and Data-driven Interviews
合作研究:通过机器学习和数据驱动访谈的教育游戏推进 STEM 兴趣发展科学
  • 批准号:
    2301172
  • 财政年份:
    2023
  • 资助金额:
    $ 43.72万
  • 项目类别:
    Continuing Grant
Development of Data-Collection Algorithms and Data-Driven Control Methods for Guaranteed Stabilization of Nonlinear Systems with Uncertain Equilibria and Orbits
开发数据收集算法和数据驱动控制方法,以保证具有不确定平衡和轨道的非线性系统的稳定性
  • 批准号:
    23K03913
  • 财政年份:
    2023
  • 资助金额:
    $ 43.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research and development of vector image retrieval by cooperating knowledge-driven and data-driven models
知识驱动与数据驱动模型协同的矢量图像检索研究与开发
  • 批准号:
    23K11121
  • 财政年份:
    2023
  • 资助金额:
    $ 43.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of data-driven methods for de novo design of novel enzymes.
开发用于新型酶从头设计的数据驱动方法。
  • 批准号:
    2890692
  • 财政年份:
    2023
  • 资助金额:
    $ 43.72万
  • 项目类别:
    Studentship
Development of bioinformatic pipelines for multi omics data to model the effect of small molecule driven lipid metabolism on autophagy regulation
开发多组学数据的生物信息学管道,以模拟小分子驱动的脂质代谢对自噬调节的影响
  • 批准号:
    BB/Y512540/1
  • 财政年份:
    2023
  • 资助金额:
    $ 43.72万
  • 项目类别:
    Training Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了